首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chromium phytoextraction and physiological responses of the hyperaccumulator Leersia hexandra Swartz to plant growth-promoting rhizobacterium inoculation
Authors:Xuehong Zhang  Yuanyuan Zhang  Dan Zhu  Zhiyi Lin  Na Sun  Chang Su  Hua Lin  Junjian Zheng
Institution:1. College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin 541004, China2. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China3. College of Mathematics and Science, Wuhan Institute of Technology, Wuhan 430205, China
Abstract: ● Improved Cr phytoextration efficiency was achieved by B. cereus inoculation. B. cereus could produce plant-beneficial PGPR factors at diverse Cr stresses. ● Enhanced resistance of inoculated L. hexandra towards elevated Cr stress. ● The majority of Cr existed in the stable forms in the tissues of L. hexandra. Phytoextraction is a promising option for purifying hexavalent chromium (Cr(VI))-laden wastewater, but the long remediation period incurred by poor growth rate of Cr hyperaccumulators remains a primary hindrance to its large-scale application. In this study, we performed a hydroponic experiment to evaluate the feasibility of promoting the growth and phytoextraction efficiency of Cr hyperaccumulator Leersia hexandra Swartz (L. hexandra) by inoculating plant growth-promoting rhizobacteria (PGPR) Bacillus cereus (B. cereus). In batch tests, the Cr(VI) removal rates of L. hexandra and B. cereus co-culture were greater than the sum of their respective monocultures. This was likely due to the microbial reduction of Cr(VI) to Cr(III), which is amiable to plant uptake. Besides, the PGPR factors of B. cereus, including indoleacetic acid (IAA) production, 1-aminocyclopropane-1-carboxylic acid deamination (ACCd) activity, phosphate solubilization capacity, and siderophore production, were quantified. These PGPR factors helped explain the biomass augmentation, root elongation and enhanced Cr enrichment of the inoculated L. hexandra in pot experiments. Despite the increased Cr uptake, no aggravated oxidative damage to the cell membrane was observed in the inoculated L. hexandra. This was attributed to its capacity to confront the increased intracellular Cr stress by upregulating both the activities of antioxidative enzymes and expression of metal-binding proteins/peptides. Moreover, L. hexandra could always conserve the majority of Cr in the residual and oxalic integrated forms with low mobility and phytotoxicity, irrespective of the B. cereus inoculation. These results highlight the constructed Cr hyperaccumulator-rhizobacteria consortia as an effective candidate for decontaminating Cr(VI)-laden wastewater.
Keywords:Hexavalent chromium  Hyperaccumulator  Rhizobacteria  Leersia hexandra Swartz  Bacillus cereus  Consortia  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号