首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals
Authors:F Marubini  P S Davies
Institution:(1) Bellairs Research Institute of McGill University, St. James, Barbados;(2) Division of Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland
Abstract:Very little information exists on the effects of nitrate on corals, although this is the major form in which nitrogen is prescrit in tropical eutrophie coastal waters. In this study we incubated nubbins ofPorites porites and explants ofMontastrea annularis in laboratory photostats illuminated by halide lamps, with concentrations of nitrate of 0, 1, 5 and 20 mgrM, for 40 and 30 d, respectively, At the end of this period it was found that the population density of the zooxanthellae had increased significantly with increased nitrate concentration, suggesting nitrogen limitation of the growth rate of zooxanthellae in the control group. There were also significant increases in the amount of chlorophylla ande 2 per algal cell, in the volume of the algal cells, and in the protein per cell. Overall, the protein per unit surface increased, but this was attributable solely to increased algal protein: there was no significant change in host protein. Maximum gross photosynthesis normalized to surface area was enhanced by nitrate addition, reflecting the increase in algal population density. There was no change when normalized on a per cell basis. Respiration rate normalized to protein content was decreased by nitrate. The most dramatic change was in the rate of skeletogenesis, which decreased by cong in both species when exposed to nitrate enrichment. A model is presented which suggests that the diffusion-limited supply of CO2 from surrounding seawater is used preferentially by the enlarged zooxanthellae population for Photosynthesis, thereby reducing the availability of inorganic carbon for calcification. It is concluded that enhanced nitrate levels in tropical coastal waters will have a hitherto unrecognized effect on the growth rate of tropical coral reefs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号