首页 | 本学科首页   官方微博 | 高级检索  
     

基于PSO-BP神经网络的山西省碳排放预测
引用本文:杨俊祺,范晓军,赵跃华,等.基于PSO-BP神经网络的山西省碳排放预测[J].环境工程技术学报,2023,13(6):2016-2024 doi: 10.12153/j.issn.1674-991X.20230190
作者姓名:杨俊祺  范晓军  赵跃华  袁进
作者单位:1.太原理工大学环境科学与工程学院;;2.山西科城能源环境创新研究院
基金项目:山西省发展改革委员会研究课题(JDZB-GZ-FW-2022003_2/1499002022CGK01309)
摘    要:

山西作为能源使用和碳排放大省,推动“双碳”战略对全国具有重要示范意义。基于IPCC(政府间气候变化专门委员会)排放系数法测算山西省2000—2020年的碳排放量,运用Tapio脱钩模型分析碳排放与经济发展之间的脱钩关系,利用LMDI法对影响碳排放变化的因素进行分解,采用PSO-BP神经网络模型对山西省的碳排放量进行模拟和预测。结果表明:2000—2020年山西省碳排放量呈增长趋势,碳排放强度呈下降趋势,脱钩系数为0.585,整体处于弱脱钩状态。经济增长是碳排放量增长的决定因素,而产业结构与能源强度的优化调整是抑制碳排放的主导因素。引入PSO(粒子群优化算法)有效提高了BP神经网络的预测精度。预测结果显示,在基准情景、低碳情景和强化低碳情景下,山西省碳排放分别于2032年、2029年和2027年达峰。针对预测结果,提出了相关政策建议。



关 键 词:BP神经网络   粒子群优化算法(PSO)   碳排放   预测   山西省
收稿时间:2023-03-10
修稿时间:2023-06-30

Prediction of carbon emissions in Shanxi Province based on PSO-BP neural network
YANG J Q,FAN X J,ZHAO Y H,et al.Prediction of carbon emissions in Shanxi Province based on PSO-BP neural network[J].Journal of Environmental Engineering Technology,2023,13(6):2016-2024 doi: 10.12153/j.issn.1674-991X.20230190
Authors:YANG Junqi  FAN Xiaojun  ZHAO Yuehua  YUAN Jin
Affiliation:1. School of Environmental Science and Engineering, Taiyuan University of Technology;;2. Shanxi Coshare Innovation Institute of Energy & Environment
Abstract:Shanxi, as a major province of energy use and carbon emission, has an important demonstration significance for the whole country to promote the "dual carbon" strategy. The carbon emissions of Shanxi Province from 2000 to 2020 were calculated based on IPCC emission coefficient method. Tapio decoupling model was used to analyze the decoupling relationship between carbon emissions and economic development, LMDI method was used to decompose the factors affecting carbon emission changes, and PSO-BP neural network model was used to simulate and forecast the carbon emissions of Shanxi Province. The results showed that the carbon emission in Shanxi Province increased during 2000-2020, while the carbon emission intensity decreased, and the decoupling coefficient was 0.585, indicating a weak decoupling state as a whole. Economic growth was the determining factor of carbon emission growth, and the optimization and adjustment of industrial structure and energy intensity was the leading factor to restrain carbon emission. The introduction of particle swarm optimization (PSO) improved the prediction accuracy of BP neural network effectively. The predicted results showed that carbon emissions in Shanxi Province would peak in 2032, 2029 and 2027 under three scenarios: baseline scenario, low carbon scenario and intensive low carbon scenario, respectively. In view of the forecast results, relevant policy suggestions were put forward.
Keywords:BP neural network  particle swarm optimization (PSO)  carbon emissions  prediction  Shanxi Province
点击此处可从《环境工程技术学报》浏览原始摘要信息
点击此处可从《环境工程技术学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号