首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Repeated geographic divergence in behavior: a case study employing phenotypic trajectory analyses
Authors:Spencer J Ingley  Eric J Billman  Chelsey Hancock  Jerald B Johnson
Institution:1. Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, UT, 84602, USA
2. Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, 97331, USA
3. Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, 84602, USA
Abstract:Environmental effects on behavior have long been a focus of behavioral ecologists. Among the important drivers of behavior is predation environment, which can include the presence/absence of predators, differences in resource availability, and variation in individual density. Environments with predators are often more ecologically complex and “risky” than those without predators. Populations from these environments are sometimes more active and explorative than populations from low-risk, less complex environments. To date, most comparative studies of behavior are limited to within-species comparisons of populations from divergent environments, but neglect comparisons between species following speciation, thus limiting our understanding of post-speciation behavioral evolution. Brachyrhaphis fishes provide an ideal system for studying correlations between divergent environments and behavior within and between species. Here, we test for differences in two behavioral traits—activity and exploration —between sister species Brachyrhaphis roseni and Brachyrhaphis terrabensis that occur in divergent predation environments. Species differed in activity and exploration, with higher activity and exploration levels in populations that co-occur with predators. Furthermore, we found drainage-by-species interactions, indicating that the nature of divergence varied geographically. Using the recently developed phenotypic trajectory analysis (PTA), we quantified this difference and found that, while the geographically isolated populations of sister species tended to evolve in parallel, the magnitude of divergence between species differed between drainages. Our results highlight the utility of PTA for multivariate behavioral data and corroborate past predictions that complex and risky environments are correlated with increased activity and exploration levels and that divergence continues post-speciation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号