首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of the bound residue composition derived from 14C-labeled chlorsulfuron in soil by using LC-MS and isotope tracing method
Authors:Ye Qing-fu  Wu Jian-min  Sun Jin-he
Affiliation:Institute of Nuclear- Agricultural Science, Zhejiang University, Hangzhou 310029, China
Abstract:A new method for extracting the bound residue(BR) derived from 14 C-labeled chlorsulfuron in soils was developed, and the technique of combining LC-MS with isotope tracing method was subsequently applied to identify the composition of the 14 C-BR in a loamy Fluvent derived from marine deposit. The results showed that the 14 C-[2-amino-4-methoxyl-6-methyl-1,3,5]-triazine, 14 C-[2-amino-4-hydroxyl-6-methyl-1,3,5]-triazine and 14 C-chlorsulfuron parent compound constituted the main composition of the 14 C-BR derived from 14 C-labeled chlorsulfuron in the soil. The radioactive ratio of three compounds accounted for 39.8%, 35.4% and 17.9% of total recovered radioactivity, respectively. However, a small amount(3.6% of total recovered radioactivity) of the complex of 14 C-[2-amino-4-hydroxyl-6-methyl-1,3,5]-triazine might have existed in the 14 C-BR in association with an unknown soil substrate. 2-chlorobenzenesulfonamide was also detected to be one of the components of the BR. The results could well explain the mechanism of phytotoxicity caused by the BR derived from chlorsulfuron in soil. In addition, the mechanism of BR formation in soil was also discussed in details.
Keywords:bound residue  chlorsulfuron  composition  identification  soil
本文献已被 CNKI 维普 万方数据 PubMed 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号