首页 | 本学科首页   官方微博 | 高级检索  
     


Degradation of aqueous carbon tetrachloride by nanoscale zerovalent copper on a cation resin
Authors:Lin Chin Jung  Lo Shang-Lien  Liou Ya Hsuan
Affiliation:Research Center for Environmental Pollution Prevention and Control Technology, Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan, ROC. d89541005@ntu.edu.tw
Abstract:Nanoscale zerovalent copper supported on a cation resin was successfully synthesized to enhance the removal of carbon tetrachloride (CCl(4)) from contaminated water. The use of the cation resin as a support prevents the reduction of surface area due to agglomeration of nanoscale zerovalent copper particles. Moreover, the cation resin recycles the copper ions resulting from the reaction between CCl(4) and Cu(0) by simultaneous ion exchange. The decline in the amount of CCl(4) in aqueous solution results from the combined effects of degradation by nanoscale zerovalent copper and sorption by the cation resin; thus the amount of CCl(4) both in aqueous solution and sorbed onto the resin were measured. The pseudo-first-order rate constant normalized by the surface-area and the mass concentration of nanoscale zerovalent copper (k(SA)) was 2.1+/-0.1 x 10(-2)lh(-1)m(-2), approximately twenty times that of commercial powdered zerovalent copper (0.04 mm). Due to the exchange between Cu(2+) and the strongly acidic ions (H(+) or Na(+)), the pH was between 3 and 4 in unbuffered solution and Cu(2+) at the concentration of less than 0.1 mg l(-1) was measured after the dechlorination reaction. In the above-ground application, resin as a support would facilitate the development of a process that could be designed for convenient emplacement and regeneration of porous reductive medium.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号