The effect of silica on the degradation of organohalides in granular iron columns |
| |
Authors: | Kohn Tamar Roberts A Lynn |
| |
Affiliation: | Department of Geography and Environmental Engineering, 313 Ames Hall Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686, USA. |
| |
Abstract: | Dissolved silica species are naturally occurring, ubiquitous groundwater constituents with corrosion-inhibiting properties. Their influence on the performance and longevity of iron-based permeable reactive barriers for treatment of organohalides was investigated through long-term column studies using Connelly iron as the reactive medium. Addition of dissolved silica (0.5 mM) to the column feed solution led to a reduction in iron reactivity of 65% for trichloroethylene (TCE), 74% for 1,1,2-trichloroethane (1,1,2-TCA), and 93% for 1,1,1-trichloroethane (1,1,1-TCA), compared to columns operated under silica-free conditions. Even though silica adsorption was a gradual process, the inhibitory effect was evident within the first week, with subsequent decreases in reactivity over 288 days being relatively minor. Lower concentrations of dissolved silica species (0.2 mM) led to a lesser decrease (70%) in iron reactivity toward 1,1,1-TCA. The presence of dissolved silica species produced a shift in TCE product distribution toward the more highly chlorinated product cis-dichloroethylene (cis-DCE), although it did not appear to alter products originating from the trichloroethanes. The major corrosion products identified were magnetite (Fe3O4) or maghemite (gamma-Fe2O3) and carbonate green rust ([Fe4(2+)Fe(2)3+(OH)12][CO(3).2H2O]). Iron carbonate hydroxide (Fe(II)1.8Fe(III)0.2(OH)2.2CO3) was only found in the silica-free column, indicating that silica may hinder its formation. A comparison with columns operated under the same conditions, but using Master Builder iron as the reactive matrix, showed that Connelly iron is initially less reactive, but performs better than Master Builder iron over 288 days. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|