首页 | 本学科首页   官方微博 | 高级检索  
     


Exploring the potential of applying proteomics for tracking bisphenol A and nonylphenol degradation in activated sludge
Authors:Neus Collado  Gianluigi Buttiglieri  Boris A. Kolvenbach  Joaquim Comas  Philippe F.-X. Corvini  Ignasi Rodríguez-Roda
Affiliation:1. LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, E-17071 Girona, Catalonia, Spain;2. ICRA, Catalan Institute for Water Research, Carrer Emili Grahit, 101, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain;3. Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
Abstract:A significant percentage of bisphenol A and nonylphenol removal in municipal wastewater treatment plants relies on biodegradation. Nonetheless, incomplete information is available concerning their degradation pathways performed by microbial communities in activated sludge systems. Hydroquinone dioxygenase (HQDO) is a specific degradation marker enzyme, involved in bisphenol A and nonylphenol biodegradation, and it can be produced by axenic cultures of the bacterium Sphingomonas sp. strain TTNP3. Proteomics, a technique based on the analysis of microbial community proteins, was applied to this strain. The bacterium proteome map was obtained and a HQDO subunit was successfully identified. Additionally, the reliability of the applied proteomics protocol was evaluated in activated sludge samples. Proteins belonging to Sphingomonas were searched at decreasing biomass ratios, i.e. serially diluting the bacterium in activated sludge. The protein patterns were compared and Sphingomonas proteins were discriminated against the ones from sludge itself on 2D-gels. The detection limit of the applied protocol was defined as 10?3 g TTNP3 g?1 total suspended solids (TSSs). The results proved that proteomics can be a promising methodology to assess the presence of specific enzymes in activated sludge samples, however improvements of its sensitivity are still needed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号