首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Complete degradation of di-n-octyl phthalate by Gordonia sp. strain Dop5
Authors:Jayita Sarkar  Piyali Pal Chowdhury  Tapan K Dutta
Institution:Department of Microbiology, Bose Institute, P-1/12, C.I.T. Scheme VII M, Kolkata, India
Abstract:The present study describes the assimilation of di-n-octyl phthalate by an aerobic bacterium, isolated from municipal waste-contaminated soil sample utilizing di-n-octyl phthalate as the sole source of carbon and energy. The isolate was identified as Gordonia sp. based on the morphological, nutritional and biochemical characteristics as well as 16S rRNA gene sequence analysis. A combination of chromatographic and spectrometric analyses revealed a complete di-n-octyl assimilation pathway. In the degradation process, mono-n-octyl phthalate, phthalic acid, protocatechuic acid and 1-octanol were identified as the degradation products of di-n-octyl phthalate. Furthermore, phthalic acid was metabolized via protocatechuic acid involving protocatechuate 3,4-dioxygenase while 1-octanol was metabolized by NAD+-dependent dehydrogenases to 1-octanoic acid, which was subsequently degraded via β-oxidation, ultimately, leading to tricarboxylic acid cycle intermediates. Apart from phthalic acid and 1-octanol metabolizing pathway enzymes, two esterases, di-n-octyl phthalate hydrolase and mono-n-octyl phthalate hydrolase involved in di-n-octyl phthalate degradation were found to be inducible in nature. This is the first report on the metabolic pathway involved in the complete degradation of di-n-octyl phthalate by a single bacterial isolate, which is also capable of efficiently degrading other phthalate esters of environmental concern having either shorter or longer alkyl chains.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号