首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxidative stress and arsenic toxicity: Role of NADPH oxidases
Authors:DK Gupta  M Inouhe  M Rodríguez-Serrano  MC Romero-Puertas  LM Sandalio
Institution:1. Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidin, CSIC, C/Prof. Albareda 1, Granada E-18008, Spain;2. Department of Biology, Faculty of Science, Ehime University, Matsuyama 790-8577, Japan
Abstract:The effect of arsenic (25 and 50 μM As for 1 and 5 d) was analysed in wild type (WT) and Arabidopsis thaliana (L.) Heynh plants deficient in NADPH oxidase C (AtrbohC). The content of H2O2 and malondialdehyde (MDA) increased with the As concentration, while the opposite effect was found for NO in WT and AtrbohC plants. The As treatment reduced catalase and increased glutathione reductase activities to the same extent in WT and AtrbohC plants, although the induction of all SOD isoforms (mainly CuZn–SODs) was observed in WT plants, the opposite effects being found in AtrbohC plants. Glycolate oxidase (H2O2 producers) considerably increased with the concentration and time of treatment with As in WT and AtrbohC mutants. Arsenic induced the uptake and translocation of P, S, Cu, Zn, and Fe in WT plants, while in AtrbohC plants the opposite trend was noted and the uptake of As became considerably lower than in WT plants. These results suggest that As causes oxidative stress by inducing glycolate oxidase, while NADPH oxidase does not appear to participate in ROS overproduction but could be critical in regulating antioxidant defences as well as the transport and translocation of As and macro/micronutrients.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号