首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Feasibility of bioleaching combined with Fenton oxidation to improve sewage sludge dewaterability
Authors:Changgeng Liu  Panyue Zhang  Chenghua Zeng  Guangming Zeng  Guoyin Xu and Yi Huang
Institution:School of Resources and Environmental Engineering, Panzhihua University, Panzhihua 617000, China;Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China;College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China;College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;School of Resources and Environmental Engineering, Panzhihua University, Panzhihua 617000, China;Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China;College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;School of Resources and Environmental Engineering, Panzhihua University, Panzhihua 617000, China;School of Resources and Environmental Engineering, Panzhihua University, Panzhihua 617000, China
Abstract:A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation. Meanwhile, the SRF declined from 6.45 × 1010 to 2.07 × 1010 s2/g, and MSC decreased from 91.42% to 87.66%. The bioleached sludge was further conditionedwith Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+ were 0.12 and 0.036 mol/L, respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF, volatile solids reduction, and MSC were 3.43 × 108 s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides, the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioningmechanisms by bioleaching-Fenton oxidationmight mainly include the flocculation effects and the releases of extracellular polymeric substances-bound water and intercellular water.
Keywords:Sewage sludge  Bioleaching  Fenton oxidation  Dewaterabilty
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号