首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation
Authors:Rahimeh Nosrati  Ali Olad  Roya Maramifar
Institution:Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
Abstract:PURPOSE AND METHOD: ZnO/polyaniline nanocomposite in core-shell structure was prepared by the synthesis and adsorption of polyaniline chains on the structure of ZnO nanoparticles. Fourier transform infrared and ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction patterns, field emission scanning electron microscopy, and transmission electron microscopy were used to characterize the composition and structure of the nanocomposite. The nanocomposite was used as an active photocatalyst for photodegradation and removal of ampicillin in aqueous solution. RESULTS: UV-Vis spectroscopy studies showed that ZnO/polyaniline nanocomposite absorbs visible light irradiation as well as ultraviolet spectrum, and therefore, it can be photoactivated under visible and ultraviolet lights. The photocatalytic activity of ZnO/polyaniline nanocomposite in degradation of ampicillin molecules in aqueous solution under natural sunlight irradiation was evaluated and compared with that of ZnO nanoparticles and pristine polyaniline. The ZnO/polyaniline core-shell nanocomposite exhibited higher photocatalytic activity compared to ZnO nanoparticles and pristine polyaniline. The effect of operating conditions (pH, ZnO/polyaniline nanocomposite dosage, and ampicillin concentration) in the photocatalytic degradation of ampicillin using ZnO/polyaniline nanocomposite was investigated. The optimum conditions for maximum efficiency of ampicillin degradation under 120 min sunlight irradiation were found as 10 mg L(-1) dosage of ZnO/polyaniline nanocomposite, ampicillin concentration of 4.5 mg L(-1), and solution pH?=?5. Under optimum operating conditions, degradation efficiency was reached to 41% after 120 min of exposure to the sunlight irradiation.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号