首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF的起重作业岗位人因可靠性预测
引用本文:王洪德,马成正. 基于RBF的起重作业岗位人因可靠性预测[J]. 中国安全科学学报, 2012, 22(7): 42-47
作者姓名:王洪德  马成正
作者单位:1. 大连交通大学土木与安全工程学院,辽宁 大连,116028
2. 柳州铁道职业技术学院运输与经济管理系,广西 柳州,545007
基金项目:国家自然科学基金资助,辽宁省自然科学基金资助,大连市科技计划项目
摘    要:为提高起重作业可靠性,防止人因失误酿成事故,针对人因失误的随机性、模糊性和不确定性特点,提出运用具有非线性映射能力和容错能力的径向基函数(RBF)神经网络,分析人因失误非线性动力学过程。以起重机操作岗位作为人因可靠性分析(HRA)实例,首先,建立基于"作业人员、交流界面、作业环境、作业特性、作业组织"的人因可靠性预测指标体系,并对指标进行量化;其次,根据人因可靠性原理,统计出人因失误次数,给出人因失误率;最后,通过对"人的疲劳和情绪、交流通道、作业复杂程度和时间裕度、照明环境和风力影响、工作强度和安全监管"等因素的分析,构建基于RBF的起重机操作岗位人因可靠性预测分析神经网络模型。分析结果表明,RBF预测分析同时包含人的操作可靠性与认知可靠性,预测结果同现场实际观测结果的符合度达到92.0%。

关 键 词:人因可靠性  起重作业  预测模型  指标量化  RBF神经网络

Human Reliability Prediction of Lifting Operation Based on RBF Neural Network
WANG Hong-de , MA Cheng-zheng. Human Reliability Prediction of Lifting Operation Based on RBF Neural Network[J]. China Safety Science Journal, 2012, 22(7): 42-47
Authors:WANG Hong-de    MA Cheng-zheng
Affiliation:1 School of Civil & Safety Engineering,Dalian Jiaotong University,Dalian Liaoning 116028,China 2 Departments of Transportation & Economic,Liuzhou Railways Vocational Technical College,Liuzhou Guangxi 545007,China)
Abstract:In order to improve the reliability of lifting operation,and prevent accident caused by human errors,bearing randomness,fuzziness and uncertainty of human error in mind,an RBF neural network-based method for analyzing the human error's nonlinear dynamics process was put forwarded.Taking the lifting operation as example,firstly,an indexes system about the human reliability prediction was constructed,which included the factors of the operator,the communion interface,the operating circumstance,the operating characteristics and the operating organization.Then the indexes were quantified.Secondly,according to human reliability analysis(HRA) theory and the scene record,the human error data were calculated out,and the human error rates were given.Finally,basing on the analysis of the operator's tiredness and emotion,information channels,operation complexity and time margin,lighting and wind power conditions,working pressure and safety supervision,an RBF neural network-based model for lifting operation human reliability was built.The results indicate that the RBF prediction includes the operation reliability as well as the cognitive reliability,and that the predictions results conform with the actual observed values up to 92.0%.
Keywords:human reliability  lifting operation  prediction model  indexes quantification  radial basis function (RBF) neural network
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号