FIA-coupled spectrophotometric method for determination of Cr (VI) traces in natural waters: application of in-line dissolution of 1,5-diphenylcarbazide after heat treatment and activated alumina as adsorbent for preconcentration |
| |
Authors: | Diogenes Meneses José Guimarães F. Júnior Paulo Cesar Costa de Oliveira |
| |
Affiliation: | 1.Instituto de Química e Biotecnologia, Universidade Federal de Alagoas,Maceió,Brazil |
| |
Abstract: | This work proposes the quantification of Cr (VI) ions in natural waters in trace level, using activated alumina (Al2O3) as preconcentration support, controlled in-line dissolution of the solidified chromophore diphenylcarbazide after heat treatment and spectrophotometric detection. The manifold ensures high sensitivity of analytical response, good repeatability, and stability. In this work, optimization of experimental conditions of a flow injection system was chosen as the parameters for greater sensitivity and better selectivity. The selected optimized conditions were 0.30 mol L?1 for H2SO4 concentration, system flow rate as 0.40 mL min?1, sample injection volume of 192.50 μL, 2 min for preconcentration time, and 0.10 mol L?1 for eluent concentration. The analytical curves obtained for real sample analysis show linear range from 0.192 to 0.961 μM, linear correlation coefficient R?=?0.9997 and LOD?=?0.024 μM. The preconcentration factor of about four times was obtained through the passage of 800 μL of a standard solution containing 0.961 μM of Cr (VI) through mini-column of preconcentration followed by elution at 192.5 μL of NH4OH 0.1 mol L?1 solution. The solid chromogenic reagent presented high durability (weeks in daily use with mass of 0.0993 g) and good reproducibility in analytical signal. The reactivation of the mini-column of alumina should be executed after ten injections of eluent, using 800 μL of HCl 0.02 mol L?1 solution in flow through the same. Each cycle of injection and elution of the sample takes about 5 min on the proposed terms. Despite the length of each cycle still be high, low concentrations can be detected using a technique of relatively low cost. This is due in part, the association dissolution of the chromogenic reagent directly in the line and the preconcentration step. Another important factor is the economy of reagent chromogenic, low generation of reject contributing to better quality of the environment, and the high potential for applications to work in field. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|