首页 | 本学科首页   官方微博 | 高级检索  
     


Arsenic distribution and bioaccessibility across particle fractions in historically contaminated soils
Authors:E. Smith   J. Weber  A. L. Juhasz
Affiliation:(1) Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA, 5095, Australia;(2) CRC for Contamination Assessment and Remediation of the Environment, Mawson Lakes, SA, 5095, Australia
Abstract:Incidental soil ingestion is a common contaminant exposure pathway for humans, notably children. It is widely accepted that the inclusion of total soil metal concentrations greatly overestimates the risk through soil ingestion for people due to contaminant bioavailability constraints. The assumption also assumes that the contaminant distribution and the bioaccessible fraction is consistent across all particle sizes. In this study, we investigated the distribution of arsenic across five particle size fractions as well as arsenic bioaccessibility in the <250-, <100-, <10- and 2.5-μm soil particle fractions in 50 contaminated soils. The distribution of arsenic was generally uniform across the larger particle size fractions but increased markedly in the <2.5-μm soil particle fraction. The marked increase in arsenic concentration in the <2.5-μm fraction was associated with a marked increase in the iron content. Arsenic bioaccessibility, in contrast, increased with decreasing particle size. The mean arsenic bioaccessibility increased from 25 ± 16% in the <250-μm soil particle fraction to 42 ± 23% in the <10-μm soil particle fraction. These results indicate that the assumption of static arsenic bioaccessibility values across particle size fractions should be reconsidered if the ingested material is enriched with small particle fractions such as those found in household dust.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号