首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photolysis of pharmaceuticals and personal care products in the marine environment under simulated sunlight conditions: irradiation and identification
Authors:Aasim Musa Mohamed Ali  Roland Kallenborn  Leiv Kristen Sydnes  Helene Thorsen Rønning  Walied Mohamed Alarif  Sultan Al-Lihaibi
Institution:1.Department of Marine Chemistry, Faculty of Marine Sciences,King Abdulaziz University,Jeddah,Saudi Arabia;2.Faculty of Chemistry, Biotechnology and Food Sciences (KBM),Norwegian University of Life Sciences (NMBU),?s,Norway;3.Department of Chemistry,University of Bergen,Bergen,Norway;4.School of Veterinary Sciences,Norwegian University of Life Sciences (NMBU),Oslo,Norway
Abstract:The photochemical fate of 16 pharmaceuticals and personal care products (PPCPs) found in the environment has been studied under controlled laboratory conditions applying a sunlight simulator. Aqueous samples containing PPCPs at environmentally relevant concentrations were extracted by solid-phase extraction (SPE) after irradiation. The exposed extracts were subsequently analysed by liquid chromatography combined with triple quadrupole mass spectrometry (HPLC-MS/MS) for studying the kinetics of photolytic transformations. Almost all exposed PPCPs appeared to react with a half-life time (τ 1/2) of less than 30 min. For ranitidine, sulfamethoxazole, diclofenac, warfarin, sulfamethoxazole and ciprofloxacin, τ1/2 was found to be even less than 5 min. The structures of major photolysis products were determined using quadrupole-time-of-flight mass spectrometry (QToF) and spectroscopic data reported in the literature. For diclofenac, the transformation products carbazol-1-yl-acidic acid and 8-chloro-9H-carbazol-1-yl-acetic acid were identified based on the mass/charge ratio of protonated ions and their fragmentation pattern in negative electrospray ionization (ESI?-QTOF). Irradiation of carbamazepine resulted in three known products: acridine, carbamazepine-10,11-epoxide, and 10,11-dihydro-10,11-dihydroxy-carbamazepine, whereas acetaminophen was photolytically transformed to 1-(2-amino-5 hydroxyphenyl) ethenone. These photochemical products were subsequently identified in seawater or fish samples collected at sites exposed to wastewater effluents on the Saudi Arabian coast of the Red Sea.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号