首页 | 本学科首页   官方微博 | 高级检索  
     检索      

厌氧/好氧SNEDPR系统处理低C/N污水的优化运行
引用本文:王晓霞,王淑莹,赵骥,戴娴,彭永臻.厌氧/好氧SNEDPR系统处理低C/N污水的优化运行[J].中国环境科学,2016,36(9):2672-2680.
作者姓名:王晓霞  王淑莹  赵骥  戴娴  彭永臻
作者单位:1. 北京工业大学, 北京市水质科学与水环境科学重点实验室, 北京 100124; 2. 青岛大学环境工程系, 山东 青岛 266071
基金项目:国家自然科学基金项目(51578014);北京市教委科技创新平台项目
摘    要:为实现同步硝化内源反硝化除磷(SNEDPR)系统的优化运行,以实际生活污水为处理对象,采用厌氧(180min)/好氧运行的SBR反应器,并通过联合调控好氧段溶解氧(DO)浓度(0.3~1.0mg/L)和好氧时间(150~240min),考察了该系统脱氮除磷特性.并结合荧光原位杂交(FISH)技术对系统优化过程中各功能菌群的结构变化情况进行了分析.试验结果表明,当系统好氧段DO浓度由约1.0mg/L逐渐降至0.3mg/L,且好氧时间由150min逐渐延长至240min后,出水PO43--P浓度稳定在0.4mg/L左右,但出水TN浓度由14.3mg/L降至8.7mg/L,TN去除率由75%提高至84%.此外,随着好氧段DO浓度的降低,SNED现象愈加明显,SNED率由34.7%逐渐升高至63.8%.SNED的加强,降低了出水NO3--N浓度,并提高了系统的脱氮性能和厌氧段的内碳源储存量.FISH结果表明:经127d的优化运行,系统内PAOs,GAOs和AOB(氨氧化菌)仍保持在较高水平(分别全菌的29%±3%,20%±3%和13%±3%),其保证了系统除磷、硝化和反硝化脱氮性能;但NOB(亚硝酸盐氧化菌)含量减少了50%,为系统内实现短程硝化内源反硝化提供了可能.

关 键 词:强化生物除磷  同步硝化内源反硝化(SNED)  聚磷菌(PAOs)  聚糖菌(GAOs)  短程硝化  
收稿时间:2016-01-18

Optimization for low C/N sewage treatment in an anaerobic/aerobic simultaneous nitrification-endogenous denitrification and phosphorous removal system
WANG Xiao-xia,WANG Shu-ying,ZHAO Ji,DAI Xian,PENG Yong-zhen.Optimization for low C/N sewage treatment in an anaerobic/aerobic simultaneous nitrification-endogenous denitrification and phosphorous removal system[J].China Environmental Science,2016,36(9):2672-2680.
Authors:WANG Xiao-xia  WANG Shu-ying  ZHAO Ji  DAI Xian  PENG Yong-zhen
Institution:1. Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; 2. Department of Environmental Engineering, Qingdao University, Qingdao 266071, China
Abstract:This study focused on the nitrogen (N) and phosphorus (P) removal performance optimization in simultaneous nitrification-endogenous denitrification and phosphorus removal (SNEDPR) systems. An anaerobic (180min)/aerobic sequencing batch reactor (SBR) fed with domestic wastewater was studied for optimization of N and P removal performance of SNEDPR by regulating the aerobic dissolved oxygen (DO) concentration (0.3~1.0mg/L) and aerobic duration time (150~240min). FISH technology was also employed to analyze the population dynamics of functional microorganisms in the SNEDPR system. Results indicated that the effluent PO43--P concentration was below 0.4mg/L, effluent TN concentration decreased from 14.3mg/L to 8.7mg/L, and TN removal efficiency increased from 75% to 84% with aerobic DO concentration decreased from 1.0mg/L to 0.3mg/L and aerobic duration time increased from 150min to 240min. SNED was enhanced by the decreased aerobic DO concentration, with SNED efficiency increased from 34.7% to 63.8%. The enhanced SNED reduced the effluent NO3--N concentration, improved the N removal performance, and strengthened the intracellular carbon storage at the following anaerobic stage. FISH results showed that the populations of PAOs, GAO and AOB (ammonia oxidizing bacteria) still maintained at high levels in the 127-day optimized SNEDPR-SBR (accounting for 29%±3%, 20%±3% and 13%±3% of total biomass, respectively), which ensured the P uptake, nitrification and denitrification; however, NOB (nitrite oxidizing bacteria) reduced by 50%, which provided a possibility to achieve N removal through simultaneous partial nitrification-endogenous denitrification in the SNEDPR.
Keywords:enhanced biological phosphorous removal  simultaneous nitrification-endogenous denitrification (SNED)  phosphorous accumulating organisms (PAOs)  glycogen accumulating organisms (GAOs)  partial nitrification  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号