首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrological,Physical, and Chemical Functions and Connectivity of Non‐Floodplain Wetlands to Downstream Waters: A Review
Authors:Charles R Lane  Scott G Leibowitz  Bradley C Autrey  Stephen D LeDuc  Laurie C Alexander
Institution:1. National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA;2. National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Corvallis, Oregon, USA;3. National Center for Environmental Assessment, U.S. Environmental Protection Agency, Arlington, Virginia, USA
Abstract:We reviewed the scientific literature on non‐floodplain wetlands (NFWs), freshwater wetlands typically located distal to riparian and floodplain systems, to determine hydrological, physical, and chemical functioning and stream and river network connectivity. We assayed the literature for source, sink, lag, and transformation functions, as well as factors affecting connectivity. We determined NFWs are important landscape components, hydrologically, physically, and chemically affecting downstream aquatic systems. NFWs are hydrologic and chemical sources for other waters, hydrologically connecting across long distances and contributing compounds such as methylated mercury and dissolved organic matter. NFWs reduced flood peaks and maintained baseflows in stream and river networks through hydrologic lag and sink functions, and sequestered or assimilated substantial nutrient inputs through chemical sink and transformative functions. Landscape‐scale connectivity of NFWs affects water and material fluxes to downstream river networks, substantially modifying the characteristics and function of downstream waters. Many factors determine the effects of NFW hydrological, physical, and chemical functions on downstream systems, and additional research quantifying these factors and impacts is warranted. We conclude NFWs are hydrologically, chemically, and physically interconnected with stream and river networks though this connectivity varies in frequency, duration, magnitude, and timing.
Keywords:connectivity  function  non‐floodplain  river networks  wetlands
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号