首页 | 本学科首页   官方微博 | 高级检索  
     

基于LOADEST和数字滤波的水源地基流氮素输出定量方法应用实例
引用本文:黄宏,廖忠鹭,狄迪,梅琨,夏芳,王振峰,商栩,张明华,纪晓亮. 基于LOADEST和数字滤波的水源地基流氮素输出定量方法应用实例[J]. 环境科学学报, 2020, 40(1): 188-196. DOI: 10.13671/j.hjkxxb.2019.0346
作者姓名:黄宏  廖忠鹭  狄迪  梅琨  夏芳  王振峰  商栩  张明华  纪晓亮
作者单位:温州医科大学公共卫生与管理学院,温州325035;浙江省流域水环境与健康风险研究重点实验室,温州325035,温州医科大学公共卫生与管理学院,温州325035;浙江省流域水环境与健康风险研究重点实验室,温州325035;浙南水科学研究院,温州325035,温州医科大学公共卫生与管理学院,温州325035;浙江省流域水环境与健康风险研究重点实验室,温州325035,温州医科大学公共卫生与管理学院,温州325035;浙江省流域水环境与健康风险研究重点实验室,温州325035;浙南水科学研究院,温州325035,温州医科大学公共卫生与管理学院,温州325035;浙江省流域水环境与健康风险研究重点实验室,温州325035;浙南水科学研究院,温州325035,温州医科大学公共卫生与管理学院,温州325035;浙江省流域水环境与健康风险研究重点实验室,温州325035;浙南水科学研究院,温州325035,温州医科大学公共卫生与管理学院,温州325035;浙江省流域水环境与健康风险研究重点实验室,温州325035;浙南水科学研究院,温州325035,温州医科大学公共卫生与管理学院,温州325035;浙江省流域水环境与健康风险研究重点实验室,温州325035;浙南水科学研究院,温州325035,温州医科大学公共卫生与管理学院,温州325035;浙江省流域水环境与健康风险研究重点实验室,温州325035;浙南水科学研究院,温州325035
基金项目:国家自然科学基金资助项目(No.41601554,41807495);温州市基础性科研项目(No.S20180005);温州医科大学人才科研启动基金项目(No.QTJ18032)
摘    要:地表直接径流和基流均是流域非点源氮/磷养分输出的重要水文途径.科学认识和定量模拟基流氮/磷养分输出对于准确解析水源地水体非点源污染来源至关重要.基于Load Estimator模型和数字滤波算法,建立了定量水源地基流氮素输出的方法体系.以浙江省珊溪水源地的玉泉溪流域为例,利用玉泉溪2010-01—2013-12期间逐月总氮(TN)水质监测数据和逐日流量数据,展示了该方法的计算过程.结果表明,本文建立的水源地基流氮素输出定量方法结果合理,模拟精度高,决定系数和纳什系数分别为0.83和0.80;玉泉溪流域2010—2013年TN负荷量为141.21~274.68 t·a~(-1),平均208.63 t·a~(-1),年基流TN负荷量为84.39~168.68 t·a~(-1),平均127.69 t·a~(-1);基流对玉泉溪年均TN负荷量贡献率高达60%以上,流域基流养分输出对地表水体的污染应引起足够重视.

关 键 词:水源地  基流  氮素输出  非点源污染  LOA DEST  数字滤波算法
收稿时间:2019-05-20
修稿时间:2019-08-29

Case study of the quantification of baseflow nitrogen export using LOADEST and digital filtering in drinking water source region
HUANG Hong,LIAO Zhonglu,DI Di,MEI Kun,XIA Fang,WANG Zhenfeng,SHANG Xu,ZHANG Minghua and JI Xiaoliang. Case study of the quantification of baseflow nitrogen export using LOADEST and digital filtering in drinking water source region[J]. Acta Scientiae Circumstantiae, 2020, 40(1): 188-196. DOI: 10.13671/j.hjkxxb.2019.0346
Authors:HUANG Hong  LIAO Zhonglu  DI Di  MEI Kun  XIA Fang  WANG Zhenfeng  SHANG Xu  ZHANG Minghua  JI Xiaoliang
Affiliation:1. School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035;2. Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou 325035,1. School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035;2. Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou 325035;3. Southern Zhejiang Water Research Institute(iWATER), Wenzhou 325035,1. School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035;2. Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou 325035,1. School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035;2. Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou 325035;3. Southern Zhejiang Water Research Institute(iWATER), Wenzhou 325035,1. School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035;2. Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou 325035;3. Southern Zhejiang Water Research Institute(iWATER), Wenzhou 325035,1. School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035;2. Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou 325035;3. Southern Zhejiang Water Research Institute(iWATER), Wenzhou 325035,1. School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035;2. Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou 325035;3. Southern Zhejiang Water Research Institute(iWATER), Wenzhou 325035,1. School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035;2. Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou 325035;3. Southern Zhejiang Water Research Institute(iWATER), Wenzhou 325035 and 1. School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035;2. Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou 325035;3. Southern Zhejiang Water Research Institute(iWATER), Wenzhou 325035
Abstract:Surface direct runoff and baseflow are two main pathways of non-point source nitrogen/phosphorus nutrient transporting to streams. Scientific understanding and quantitative analysis on baseflow nitrogen load are essential for accurately tracking the non-point sources of nitrogen pollution. This paper applied Load Estimator model and digital filtering algorithm to quantify baseflow nitrogen load and Yu Quan River watershed drinking water source region in Shanxi, Zhejiang province, was used as the study site. Monthly total nitrogen concentration and daily stream discharge records during 2010-01-2013-12 in Yu Quan River watershed were used. The results show that the methodology used in this study could yield reasonable outcome with high simulation accuracy, the determination coefficient and Nash-Sutcliffe model efficiency were 0.83 and 0.80, respectively; the annual riverine TN loads ranged from 141.21 to 274.68 t·a-1 with an average value of 208.63 t·a-1, annual baseflow driving TN loads from 84.39 to 168.68 t·a-1 with an average value of 127.69 t·a-1; the annual contribution of baseflow to riverine TN pollution was more than 60%, which needs enough attentions on the surface water quality impairment caused by baseflow nutrient export.
Keywords:drinking water source region  baseflow  nitrogen export  non-point source pollution  LOADEST  digital filtering algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号