首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Distribution of inorganic bromine and metals during co-combustion of polycarbonate (BrPC) and high-impact polystyrene (BrHIPS) wastes containing brominated flame retardants (BFRs) with metallurgical dust
Authors:Mariusz Grabda  Sylwia Oleszek  Etsuro Shibata  Takashi Nakamura
Institution:1.Institute of Multidisciplinary Research for Advanced Materials (IMRAM),Tohoku University,Sendai,Japan;2.Institute of Environmental Engineering of the Polish Academy of Sciences,Zabrze,Poland;3.Graduate School of Science and Engineering,Kagoshima University,Kagoshima,Japan
Abstract:This study focused on the thermal degradation of polycarbonate (BrPC) and high-impact polystyrene (BrHIPS), containing different brominated flame retardants. The evolved inorganic bromine was utilized for the separation of metals present in electric arc furnace dust (EAFD). The thermal degradation of BrPC generated inorganic gaseous HBr (69%) and condensable Br2 (31%). The bromine evolved from BrHIPS was detected almost entirely in a condensed phase as SbBr3. When mixed with EAFD, the evolved inorganic bromine reacted immediately with the metallic components of zinc and lead, but not with iron. The best bromination efficiencies were obtained during the isothermal heating (80 min at 550 °C) of the mixtures at mass ratios of 6:1 and 9:1 w/w under oxidizing conditions. The achieved brominating rates reached 78 and 81% for zinc and 90 and 94% for lead in 6:1 and 9:1 BrPC:EAFD, respectively, and 47 and 65% for zinc and 67 and 63% for lead in 6:1 and 9:1 BrHIPS:EAFD, respectively. The oxidizing condition favored complete vaporization of the formed bromides.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号