首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Eu uptake by calcite: Preliminary results from coprecipitation experiments and observations with surface-sensitive techniques
Institution:a Interface Geochemistry Laboratory, Geological Institute, Copenhagen University, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark;b Danish Lithosphere Center, Copenhagen University, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
Abstract:A lack of information in databases for contamination risk assessment about the transport behaviour of the trivalent f-orbital elements in groundwater systems where calcite is at equilibrium motivated this study of Eu3+ uptake. The free drift technique was used to examine the effects of Eu3+ concentration, presence of Na+ or K+ and temperature, as well as calcite nucleation and precipitation kinetics, on the partitioning of calcite. Changes in surface composition and morphology resulting from exposure of single crystals of Iceland spar to Eu3+-bearing solutions were observed with X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). First results confirm that calcite has high affinity for Eu3+. Rates of nucleation and precipitation strongly affect the extent of uptake but the presence of Na+ and K+ has no effect, suggesting formation of solid solution as CaCO3–EuOHCO3. Surface-sensitive techniques prove that Eu3+ is adsorbed to calcite even when the surface is dissolving and adsorption is not accompanied by precipitation of a separate Eu3+-solid phase. Adsorbed Eu modifies calcite's dissolution behaviour, roughening terraces and rounding step edges, and producing surface morphology where some surface sites appear blocked. Results imply that Eu3+ concentrations in natural calcites are limited by Eu3+ availability rather than by a lack of ability to fit into calcite's atomic structure. This behaviour can probably be expected for other trivalent rare Earth elements (REE), actinides and fission products whose behaviour is similar to that of Eu3+. These elements are likely to be incorporated within the calcite bulk in systems where it is precipitating and the demonstrated strong partitioning ensures some uptake even where calcite is at or under saturation.
Keywords:Calcite  Europium (Eu3+)  Partitioning coefficient  Adsorption  Precipitation  Solid solution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号