首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the interaction between equilibration processes and wet or dry deposition
Institution:1. Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. South China Sea Monitoring Center, State Oceanic Administration, Guangzhou 510300, China
Abstract:Atmospheric equilibration processes between two phases with different deposition velocities have the potential to affect significantly the amount of total material deposited on the ground. The magnitude of the effects of the equilibration processes depends primarily on the ratio of the deposition velocities of the two phases, on the production/emission rate of the gas phase species, and on the initial distribution of species between the two phases. The deposition of a condensible species equilibrating between gas and aerosol phases can increase by as much as 20 times over that when equilibration processes are not present under appropriate conditions (very large aerosol particles, most of the material initially in the gas phase and high gas-phase production rate) or to decrease by as much as 15 times (very small aerosol particles, most of the material initially in the gas phase and high gas-phase production rate). In fog episodes, the deposition of a gaseous species with a Henry's Law constant between 103 and 106 M atm?1 (e.g. SO2 for pH between 4.5 and 7, H2O2, HCHO etc) can be enhanced by as much as a factor of 3 because of its transfer to the aqueous phase. For the NH3HNO3NH4NO3 system the total deposition can be reduced by as much as a factor of 3 for typical conditions in a polluted atmosphere and small initial concentration of aerosol NH4NO3 with NH3 initially dominating HNO3 in the gas phase. If an operator splitting scheme is used in a mathematical both equilibration and removal processes should be included in the same operator or very small operator time steps (typically less than 1 min) will be necessary.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号