首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Colony energy requirements affect the foraging currency of bumble bees
Authors:Ralph V Cartar  Lawrence M Dill
Institution:(1) Behavioural Ecology Research Group, Department of Biological Sciences, Simon Fraser University, V5A 1S6 Burnaby, BC, Canada
Abstract:Summary This study examines whether the foraging behavior of worker bumble bees (Bombus: Apidae) collecting nectar on inflorescences of seablush (Plectritis congesta: Valerianaceae) is affected by colony energetic requirements, which were experimentally manipulated either by adding sucrose solution to honey pots or by removing virtually all available nectar from the pots. The competing hypotheses tested were: (1) no change; energetic requirements do not affect behavior, since there is a single best way to collect food in a given environment; (2) energetic currency; the energetic currency maximized by foragers changes according to colony energetic condition, with nectar-depletion causing a shift from maximizing long-term productivity to maximizing immediate energetic gain, thereby de-emphasizing energetic costs; and (3) predation; foragers devalue risk of predation as risk of starvation increaes, with colony nectar-depletion causing foragers to be less predation riskaverse in order to increase immediate energetic gain. Relative to when their colony energy reserves were enhanced, foragers from nectar-depleted colonies selected smaller inflorescences, visited fewer flowers per inflorescence, probed flowers at a higher rate while on each inflorescence, and walked between inflorescences less often, thereby spending a greater proportion of their foraging trip in flight. These behaviors increased a bee's energetic costs while foraging, and should also have increased its immediate energetic gains, allowing rejection of the no change hypothesis. Predictions of the predation hypothesis were generally not supported, and our results best support the energetic currency hypothesis. Foraging currency of bumble bees therefore appears to be a function of colony energetic state. Offprint requests to: R.V. Cartar
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号