首页 | 本学科首页   官方微博 | 高级检索  
     


Spatial and temporal variability in the relationship between cyanobacterial biomass and microcystins
Authors:Som Cit Sinang  Elke S. Reichwaldt  Anas Ghadouani
Affiliation:1. Aquatic Ecology and Ecosystem Studies, School of Environmental Systems Engineering, The University of Western Australia, 35 Stirling Highway, M015, Crawley, WA, 6009, Australia
2. Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjong Malim, Perak, Malaysia
Abstract:The increasing incidence of toxic cyanobacterial blooms, together with the difficulties to reliably predict cyanobacterial toxin (e.g. microcystins) concentration, has created the need to assess the predictive ability and variability of the cyanobacterial biomass–microcystin relationship, which is currently used to assess the risk to human and ecosystems health. To achieve this aim, we assessed the relationship between cyanobacterial biomass and microcystin concentration on a spatiotemporal scale by quantifying the concentration of cyanobacterial biomass and microcystin in eight lakes over 9 months. On both a temporal and spatial scale, the variability of microcystin concentration exceeded that of cyanobacterial biomass by up to four times. The relationship between cyanobacterial biomass and microcystin was weak and site specific. The variability of cyanobacterial biomass only explained 25 % of the variability in total microcystin concentration and 7 % of the variability of cellular microcystin concentration. Although a significant correlation does not always imply real cause, the results of multiple linear regression analysis suggest that the variability of cyanobacterial biomass and cellular microcystin concentration is influenced by salinity and total phosphorus, respectively. The weak cyanobacterial biomass–microcystin relationship, coupled with the fact that microcystin was present in concentrations exceeding the WHO drinking water guidelines (1 μg?L?1) in most of the collected samples, emphasizes the high risk of error connected to the traditional indirect microcystin risk assessment method.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号