首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A linked model of animal ecology and human behavior for the management of wildlife tourism
Authors:Christina AD Semeniuk  Wolfgang Haider  Andrew Cooper  Kristina D Rothley
Institution:School of Resource and Environmental Management, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia V5A 1S6, Canada
Abstract:Wildlife tourism attractions are characterized as having intricately coupled human-wildlife interactions. Accordingly, the ability to mitigate negative impacts of tourism on wildlife necessitates research into the ecology of the system and of the human dimensions, since plans aimed at optimizing wildlife fitness must also be acceptable to tourists. We developed an integrated systems dynamics model for the management of tourist-stingray interactions at ‘Stingray City Sandbar’ (SCS), Cayman Islands. The model predicts the state of the tourism attraction over time in relation to stingray population size, stingray life expectancy, and tourist visitation under various management scenarios. Stingray population data in the model comprised growth rates and survival estimates (from mark-and-recapture data) and mortality estimates. Inputted changes in their respective rates under different management scenarios were informed by previous research. Original research on the demand of heterogeneous tourist segments for management regulations via a stated choice model was used to calculate changes in the tourist population growth rate from data supplied by the Caymanian government. The management attributes to which tourists were responsive also have anticipated effects on stingray ecology (migration and mortality), and vice versa, thus linking the two components. We found that the model's predictions over a 25-year time span were sensitive to the stingray population growth rate and alternate management options. Under certain management scenarios, it was possible to maximize both the tourist segment in favor of no management and stingray numbers while reducing stingray health. However, the most effective relative strategy included a reduction in visitor density, restricted stingray interactions, and an imposition of a small fee. Over time, although fewer stingrays were predicted to remain at SCS, they would live longer and experience fewer stochastic disease events, and the desirable tourist segment was predicted to predominate. By understanding how management will affect tourist activities and their subsequent impacts on both wildlife health and visitor satisfaction, one can explore the management alternatives that would optimize both.
Keywords:Human-wildlife interactions  Integrative modelling  System dynamics  Stingray  Tourism management  Wildlife ecology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号