首页 | 本学科首页   官方微博 | 高级检索  
     


Soil Biodegradation of PHBV/Peach Palm Particles Biocomposites
Authors:K. C. Batista   D. A. K. Silva   L. A. F. Coelho   S. H. Pezzin  A. P. T. Pezzin
Affiliation:(1) Polymeric Materials Laboratory, University of Joinville Region, UNIVILLE, 89.223-250, Joinville, SC, Brazil;(2) Center for Technological Sciences, University of Santa Catarina State, UDESC, Joinville, SC, Brazil;
Abstract:There is great interest in developing eco-friendly green biocomposites from plant-derived natural fibers and crop-derived bioplastics attributable to their renewable resource-based origin and biodegradable nature. Fully biodegradable composites, made from both biodegradable polymeric matrices and natural fibers, should be advantageous in some applications, such as one way packaging. Polyhydroxyalkanoates (PHAs) are naturally occurring biodegradable polymers produced from a wide range of microorganisms, with poly(3-hydroxybutyrate) P(3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) being important examples of PHAs. In this work, biocomposites of PHBV consisting of a PHBV matrix incorporating peach palm particles (PPp), [i.e., 100/0, 90/10, 80/20 and 75/25 (%w/w) PHBV/PPp] were processed by injection molding at 160 °C. The effect of PPp loading on the thermal and the mechanical properties, as well as on the morphological behavior of the PHBV/PPp biocomposites was investigated. Soil biodegradation tests were carried out by burying specimen beakers containing aged soil and kept under controlled temperature and humidity in accordance with ASTM G160-98. Degradation of the biocomposites was evaluated by visual analysis, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) following test exposures of up to 5 months. The addition of PPp reduced the maximum strength and the elongation at break of the biocomposites. On the other hand, the Young’s modulus improved with the PPp content. Micrographs of the fracture surfaces following tensile strength testing revealed a large distance between the PHBV matrix and PPp particles although a low interaction is expected. Where measured, these distances tended increase as the PPp content of the biocomposites increased. Soil biodegradation tests indicated that the biocomposites degraded faster than the neat polymer due to the presence of cavities that resulted from introduction of the PPp and that degradation increased with increasing PPp content. These voids allowed for enhanced water adsorption and greater internal access to the soil-borne degrader microorganisms.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号