首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics of a chemostat with three competitive hydrogen oxidizing denitrifying microbial populations and their efficiency for denitrification
Authors:IA Vasiliadou  S Pavlou  DV Vayenas
Institution:1. Department of Environmental and Natural Resources Management, University of Ioannina, Seferi 2, 30100 Agrinio, Greece;2. Department of Chemical Engineering, University of Patras, 26504 Patras, Greece;3. Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras, Greece
Abstract:In this work, competition for two nitrogen resources (nitrate-, nitrite-nitrogen) between three hydrogen oxidizing denitrifying populations (Acidovorax sp. strain Ic3 (X1), Paracoccus sp. strain Ic1 (X2), and Acinetobacter sp. strain Ic2 (X3)) was examined. The dynamics of three systems of microbial populations (system I: X1 − X3, system II: X2 − X3, and system III: X1 − X2 − X3), grown in a chemostat, was studied using bifurcation analysis. The chemostat is the most common type of biological reactor used for the study of microbial growth under controlled conditions. The effect of the operating parameters (i.e., dilution rate and feed nitrate nitrogen concentration) on the long-term behavior of the systems showed that X3 was the predominant population for a wide range of combinations of dilution rate and feed nitrate nitrogen concentration. Also, coexistence of two populations (X2X3, X1X3) was observed. The results of the bifurcation analysis were also used to determine the denitrification rate and the nitrite nitrogen accumulation for each of the three systems as a function of the dilution rate (up to 0.17 h−1) and the feed nitrate nitrogen concentration (up to 300 mg/L). The highest denitrification rate was achieved by system I (28 mg/Lh). A comparison between the three systems showed that the nitrite nitrogen concentration in system I was less than the one in system III, while the two systems gave similar denitrification rates. The second system had the greatest accumulation of nitrites with the lowest denitrification rate.
Keywords:Population dynamics  Competition  Hydrogenotrophic denitrification  Coexistence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号