首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil
Authors:Wei Qian  Jing-Yi Liang  Wen-Xuan Zhang  Shi-Ting Huang  Zeng-Hui Diao
Institution:Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
Abstract:Risk associated with heavy metals in soil has been received widespread attention. In this study, a porous biochar supported nanoscale zero-valent iron (BC-nZVI) was applied to immobilize cadmium (Cd) and lead (Pb) in clayey soil. Experiment results indicated that the immobilization of Cd or Pb by BC-nZVI process was better than that of BC or nZVI process, and about 80% of heavy metals immobilization was obtained in BC-nZVI process. Addition of BC-nZVI could increase soil pH and organic matter (SOM). Cd or Pb immobilization was inhibited with coexisting organic compound 2,4-dichlorophenol (2,4-DCP), but 2,4-DCP could be removed in a simultaneous manner with Cd or Pb immobilization at low concentration levels. Simultaneous immobilization of Cd and Pb was achieved in BC-nZVI process, and both Cd and Pb availability significantly decreased. Stable Cd species inculding Cd(OH)2, CdCO3 and CdO were formed, whereas stable Pb species such as PbCO3, PbO and Pb(OH)2 were produced with BC-nZVI treatment. Simultaneous immobilization mechanism of Cd and Pb in soil by BC-nZVI was thereby proposed. This study well demonstrates that BC-nZVI has been emerged as a potential technology for the remediation of multiple heavy metals in soil.
Keywords:Corresponding author    Cadmium (Cd)  Lead (Pb)  Biochar  Nano zero valent iron (nZVI)  Contaminated soil
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号