首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Identification of unknown disinfection byproducts in drinking water produced from Taihu Lake source water
Authors:Jiabao Li  Haifeng Zhang  Juan Wang  Zhiyong Yu  Hongyan Li  Min Yang
Institution:1. Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;2. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Although disinfection byproducts (DBPs) in drinking water have been suggested as a cancer causing factor, the causative compounds have not yet been clarified. In this study, we used liquid chromatography quadrupole-time-of-flight spectrometry (LC-QTOF MS) to identify the unknown disinfection byproducts (DBPs) in drinking water produced from Taihu Lake source water, which is known as a convergence point for the anthropogenic pollutants discharged from intensive industrial activities in the surrounding regions. In total, 91 formulas of DBPs were discovered through LC-QTOF MS nontarget screen, 81 of which have not yet been reported. Among the 91 molecules, 56 only contain bromine, 15 only contain chlorine and 20 DBPs have both bromine and chlorine atoms. Finally, five DBPs including 2,4,6-tribromophenol, 2,6-dibromo-4-chlorophenol, 2,6-dichloro-4-bromophenol, 4-bromo-2,6-di-tert-butylphenol and 3,6-dibromocarbazole were confirmed using standards. The former three compounds mainly formed in the predisinfection step (maximum concentration, 0.2-2.6 µg/L), while the latter two formed in the disinfection step (maximum concentration, 18.2-33.6 ng/L). In addition, 19 possible precursors of the discovered DBPs were detected, with the aromatic compounds being a major group. 2,6-di-tert-butylphenol as the precursor of 4-bromo-2,6-di-tert-butylphenol was confirmed with standard, with a concentration of 20.3 µg/L in raw water. The results of this study show that brominated DBPs which are possibly formed from industrial pollutants are relevant DBP species in drinking water produced form Taihu source water, suggesting protection of Taihu Lake source water is important to control the DBP risks.
Keywords:Corresponding author    Source water  Disinfection byproducts  Brominated disinfection byproducts  Nontarget analysis  Precursors  Source water pollution
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号