首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Removal of hexavalent chromium of contaminated soil by coupling electrokinetic remediation and permeable reactive biobarriers
Authors:B Fonseca  M Pazos  T Tavares  M A Sanromán
Institution:Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal.
Abstract:

Purpose

In this study, a novel and ecological alternative have been developed to treat soils contaminated with hexavalent chromium coupling two well-known systems: electrokinetic remediation and permeable reactive biobarriers. The electric field promotes the electromigration of the hexavalent chromium oxyanions towards the anode. The biobarriers were placed before the anode electrode, in order to promote the reduction and retention of the chromium migrating in its direction. Thus, this technology provided a global treatment to soil removal without subsequent treatments of the contaminated effluents.

Methods

The electrokinetic system was coupled with two different permeable reactive biobarriers composed by Arthrobacter viscosus bacteria, supported either in activated carbon or zeolite. An electric field of 10?V was applied and two different treatment times of 9 and 18?days were tested.

Results

Removal values of 60% and 79% were obtained when electrokinetic treatment was coupled with zeolite and activated carbon biobarriers, respectively, for a test period of 18?day. The reduction of hexavalent chromium to trivalent chromium was around 45% for both systems.

Conclusions

In this work, two types of biobarriers were efficiently coupled to electrokinetic treatment to decontaminate soil with Cr(VI). Furthermore, the viability of the new coupling technology developed (electrokinetic?+?biobarriers) to treat low-permeability polluted soils was demonstrated.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号