首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Examination of hydroxamate-siderophore production by neritic eukaryotic marine phytoplankton
Authors:C G Trick  R J Andersen  N M Price  A Gillam  P J Harrison
Institution:1. Department of Oceanography, University of British Columbia, V6T 2B1, Vancouver, British Columbia, Canada
3. Department of Chemistry, University of British Columbia, V6T 2B1, Vancouver, British Columbia, Canada
4. Department of Oceanography, University of British Columbia, V6T 2B1, Vancouver, British Columbia, Canada
5. Department of Botany, University of British Columbia, V6T 2B1, Vancouver, British Columbia, Canada
6. Department of Oceanography, University of British Columbia, V6T 2B1, Vancouver, British Columbia, Canada
Abstract:Species of neritic eukaryotic marine phytoplankton were investigated during 1982 for hydroxamate-type siderophore production under iron-sufficient and iron-deficient culture conditions. Three of the 5 Prorocentrum species examined produced siderophores. Prorocentrin, the extracellular hydroxamate-type siderophore isolated from P. minimum, was also produced by P. mariae-lebouriae and P. gracile. P. maximum and P. micans grew poorly in iron-deficient medium and did not produce intracellular or extracellular hydroxamate-type siderophores. Thalassiosira pseudonana and Dunaliella tertiolecta produced extracellular siderophores under iron-deficient conditions, but siderophore production was not detected in the other two species, Skeletonema costatum and Olisthodiscus luteus. Each species which produced extracellular Csaky-positive hydroxamate showed a similar pattern of production. Under iron-sufficient conditions there was no measurable siderophore found either intracellularly or extracellularly. Under iron-deficient culture conditions hydroxamate-type siderophore was produced 1 to 2 d after the cessation of growth in the stationary phase. Production was over a short period of time (1 to 2 d) and the siderophore did not remain in the medium. The rate of siderophore disappearance from the medium was similar to the rate of production. Each species which produced siderophores showed an increase in in vivo fluorescence coincidental with the disappearance of the extracellular siderophore from the culture medium. There was no corresponding increase in in vivo fluorescence in iron-sufficient cultures. It is suggested that in vivo fluorescence may be used as a screening procedure for determining hydroxamate-type siderophore production in eukaryotic phytoplankton. An hypothesis on the iron uptake mechanism is proposed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号