首页 | 本学科首页   官方微博 | 高级检索  
     


Factors affecting CO2 efflux rates and the stability of soil organic carbon storage in volcanic soils of the Canary Islands
Authors:Cecilia M. Armas-Herrera  Juan Luis Mora  Carmen D. Arbelo  Antonio Rodríguez-Rodríguez
Affiliation:1.INRA unité AgroImpact de Laon-Mons,Barenton-Bugny,France;2.Departamento de Ciencias Agrarias y del Medio Natural,Universidad de Zaragoza,Zaragoza,Spain;3.Departamento de Edafología y Geología,Universidad de La Laguna,La Laguna,Spain
Abstract:Because volcanic soils store large amounts of soil organic carbon (SOC), they play a far more important role in the carbon (C) cycle than their limited global coverage suggests. We analysed the C released as CO2 from a range of volcanic soils under natural conditions and analysed the influence of environmental variables (moisture and temperature), substrate availability (as assessed from the contents of various SOC fractions and the inputs of plant residues from litterfall), respiratory agents (roots, microorganisms and decomposing enzymes) and other pedological features of the topsoils (0–30 cm depth) on the CO2 efflux rates over a 2-year experimental period. High CO2 efflux rates (419 g C-CO2 m?2 y?1 as the average for Andisols) were obtained that were related to significant decreases in the amount of SOC stored. CO2 release was strongly controlled by soil moisture, although it was inhibited in the Andisols with the highest moisture levels (above 50 kg m?2 in topsoil). It was not responsive to the availability of decomposing microorganisms or enzymes and appeared more related to the inputs of easily decomposable plant residues than to the amount of either labile or recalcitrant SOC. Among the SOC pools, only the water-soluble C in saturated paste extracts (WSCse) of air-dried soil samples was consistently correlated with the CO2 efflux rates. The desiccation of Andisols appeared to induce the release of previously stabilised SOC, which was readily mineralised when the moisture conditions became favourable. The results of this study indicate that SOC storage in Andisols is highly vulnerable to drying-wetting processes even in unmanaged natural ecosystems and that microclimate conditions can be critical for successful C sequestration in these soils.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号