首页 | 本学科首页   官方微博 | 高级检索  
     


A numerical modeling approach to support decision-making on design of integrated multitrophic aquaculture for efficiently mitigating aquatic waste
Authors:Junbo Zhang  Daisuke Kitazawa  Chenxing Yang
Affiliation:1.Graduate School of Engineering,The University of Tokyo,Tokyo,Japan;2.Institute of Industrial Science,The University of Tokyo,Tokyo,Japan;3.Graduate School of Marine Science and Technology,Tokyo University of Marine Science and Technology,Tokyo,Japan
Abstract:As a bio-mitigation strategy of aquafarming pollutants, the integrated multitrophic aquaculture (IMTA) system has been proposed and developed to mitigate the waste produced during co-cultivation. Although there have been considerable implementations of IMTA worldwide, its optimal design needs a further study. Through a numerical modeling approach, this study aims to facilitate decision-making when designing IMTA to more efficiently mitigate the negative change caused by aquaculture. An improved three-dimensional numerical model is adopted to simulate the dynamics of water current and organic waste in Gokasho Bay, Japan. Results show that (1) the maximum main surface water current velocity in Hazama-ura area is less than 10 cm s?1, where nutrient absorbers and/or suspended feeders can easily attach to a substratum; (2) southern-eastern direction water flow is dominant through the year suggesting that seaweeds (e.g., Laminaria japonica, Ulva ohnoi) or mussels (e.g., Mytilus edulis) are better arranged in the same direction; (3) horizontal distribution of organic waste on sea bottom indicates that when releasing sea cucumbers (e.g., Apostichopus japonicus), priority is given to the areas where the accumulated amount of particulate organic waste is high. Our case study provides a general idea on the optimal design of IMTA and can be scaled to the globe, especially regarding decision-making on locations for the extractive organisms. In conclusion, to improve the bio-mitigation efficiency of IMTA, location for nutrient absorbers and/or suspended feeders can be selected based on local water flow, and sea cucumbers need to be placed with a careful consideration of the waste distribution in local area.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号