首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Deactivation of the Vanadia Catalyst in the Selective Catalytic Reduction Process
Authors:J P Chen  M A Buzanowski  R T Yang  J E Cichanowicz
Institution:1. State University of New York , Buffalo , New York , USA;2. Electric Power Research Institute , Palo Alto , California , USA
Abstract:Results are summarized of a comprehensive study of the effects on the SCR process of all major possible poisons encountered in the combustion gases from U.S. coals. A general rule evolved from this study Is that the effect of the additive on the catalyst activity Is directly related to the basicity of the additive; poisoning Is caused by the basicity. Quantitative effects are presented, while a qualitative summary is given as follows: strong poisons-alkali metal oxides; weak poisons-oxides of alkaline earth metals, arsenic, lead phosphorus and chlorides of strong alkaline metals. SO2 is a promoter due to its acidity. HCI, although acidic, reacts with both NH3 (forming NH4CI) and V2O5 (forming VCI2 and VCI3) and consequently strongly deactivates the SCR reaction.

A summary is also given for a theoretical and experimental study of the monolithic honeycomb reactor using both undoped and poison-doped catalysts. The results showed that the reactor performance can be predicted directly from the intrinsic catalyst activity through a model.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号