首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of the Adsorption Isotherm of Vapor-Phase Mercury Chloride on Powdered Activated Carbon Using Thermogravimetric Analysis
Authors:Hsun-Yu Lin  Wei-Ching Chen  Chung-Hsuang Hung
Institution:1. Institute of Environmental Engineering, National Sun Yat-Sen University , Taiwan , Republic of China;2. Department of Safety, Health and Environmental Engineering , National Kaohsiung First University of Science and Technology , Taiwan , Republic of China
Abstract:Abstract

This study investigated the use of thermogravimetric analysis (TGA) to determine the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon (PAC). The technique is commonly applied to remove mercury-containing air pollutants from gas streams emitted from municipal solid waste incinerators. An alternative form of powdered activated carbon derived from a pyrolyzed tire char was prepared for use herein. The capacity of waste tire-derived PAC to adsorb vapor-phase HgCl2 was successfully measured using a self-designed TGA adsorption system. Experimental results showed that the maximum adsorptive capacities of HgCl2 were 1.75, 0.688, and 0.230 mg of HgCl2 per gram of powdered activated carbon derived from carbon black at 30, 70, and 150 °C for 500 µg/m3 of HgCl2, respectively. Four adsorption isotherms obtained using the Langmuir, Freundlich, Redlich-Peterson, and Brunauer–Emmett–Teller (BET) models were used to simulate the adsorption of HgCl2. The comparison of experimental data associated with the four adsorption isotherms indicated that BET fit the experimental results better than did the other isotherms at 30 °C, whereas the Freundlich isotherm fit the experimental results better at 70 and 150 °C. Furthermore, the calculations of the parameters associated with Langmuir and Freundlich isotherms revealed that the adsorption of HgCl2 by PAC-derived carbon black favored adsorption at various HgCl2 concentrations and temperatures.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号