首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical Simulation of the Thermal Destruction of Some Chlorinated C1 and C2 Hydrocarbons
Authors:Elizabeth M. Fisher  Catherine P. Koshland
Affiliation:University of California, Berkeley, Berkeley , California , USA
Abstract:We have numerically modeled the breakdown of small quantities of several chlorinated hydrocarbons (CH3CI, CH2CI2, CHCI3, CCI4, C2H3CI, and C2H5CI) in a lean mixture of combustion products between 800 and 1480 K. This simulates the fate of poorly atomized waste in a liquid-Injection Incinerator. Kinetics calculations were performed using the CHEMKIN and SENKIN programs, with a reaction mechanism that was developed at Louisiana State University to model flat-flame burner experiments.

A 99.99-percent destruction efficiency was attained In one second at temperatures ranging from 1280 to 960 K, with CCI4 requiring the highest temperature for destruction and C2H5CI the lowest. For all compounds except C2H5CI, there was a range of temperatures at which byproducts accounted for several percent of the elemental chlorine at the outlet. The more heavily chlorinated compounds formed more byproducts even though the amount of elemental chlorine was the same in all cases. The sensitivity of results to residence time, equivalence ratio, temperature profile, and the presence of additional chlorine, was examined for the case of CHCI3.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号