首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mercury Emissions from a Hazardous Waste Incinerator Equipped with a State-of-the-Art Wet Scrubber
Authors:Gregory J Carroll  Robert C Thurnau  Donald J Fournier Jr
Institution:1. U.S. Environmental Protection Agency , National Risk Management Research Laboratory , Cincinnati , Ohio , USA;2. Acurex Environmental Corporation , Mountain View , California , USA
Abstract:Abstract

Over a six-week period, eleven tests were performed at the U.S. EPA Incineration Research Facility (IRF) in Jefferson, Arkansas to evaluate the fate of trace metals fed to a rotary kiln incinerator equipped with a Calvert Flux-Forcer/Condensation Scrubber pilot plant as the primary air pollution control system (APCS). Test variables were kiln temperature, ranging from 538 °C to 927 °C; waste feed chlorine content, ranging from 0% to 3.4%; and scrubber pressure drop, ranging from 8.2 kPa to 16.9 kPa. Mercury was among the six hazardous constituent trace metals fed to the IRF’s pilotscale rotary kiln incineration system as part of a synthetic waste feed. This paper focuses on the test results solely with respect to mercury.

As expected, mercury behaved as a very volatile metal throughout the tests; it was not detected in any kiln ash samples. Scrubber collection efficiency for mercury ranged from 67% to >99%, averaging 87%; this was somewhat lower than expected and may be attributable to low scrubber loadings.

The ability to collect and analyze representative scrubber water samples appears to have been affected by the waste feed chlorine content; detection of mercury at higher concentrations during high waste-chlorine-content tests is thought to be largely the result of the formation of mercuric chloride, a more water-soluble species, during those tests. As a result, no firm conclusions may be drawn regarding the true impact of waste feed chlorine content on mercury partitioning to the scrubber water. As expected, no significant relationship was observed between kiln exit-gas temperature and mercury partitioning, nor was there a significant relationship with scrubber pressure drop.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号