首页 | 本学科首页   官方微博 | 高级检索  
     


Nickel Speciation of Residual Oil Fly Ash and Ambient Particulate Matter Using X-ray Absorption Spectroscopy
Authors:Kevin C. Galbreath    Donald L. Toman  Christopher J. Zygarlicke  Frank E. Huggins  Gerald P. Huffman  John L. Wong
Affiliation:1. Energy and Environmental Research Center, University of North Dakota , Grand Forks , North Dakota , USA kgalbreath@eerc.und.nodak.edu;3. Energy and Environmental Research Center, University of North Dakota , Grand Forks , North Dakota , USA;4. Department of Chemical and Materials Engineering , University of Kentucky , Lexington , Kentucky , USA;5. Chemistry Department , University of Louisville , Louisville , Kentucky , USA
Abstract:ABSTRACT

The chemical speciation of Ni in fly ash produced from ~0.85 wt % S residual (no. 6 fuel) oils in laboratory (7 kW)- and utility (400 MW)-scale combustion systems was investigated using X-ray absorption fine structure (XAFS) spectroscopy, X-ray diffraction (XRD), and acetate extraction [1 M NaOAc-0.5 M HOAc (pH 5) at 25 °C]-anodic stripping voltammetry (ASV). XAFS was also used to determine the Ni speciation of ambient particulate matter (PM) sampled near the 400-MW system. Based on XAFS analyses of bulk fly ash and their corresponding acetate extraction residue, it is estimated that >99% of the total Ni (0.38 wt %) in the experimentally produced fly ash occurs as NiSO4-xH2O, whereas >95% of the total Ni (1.70 and 2.25 wt %) in two fly ash samples from the 400-MW system occurs as NiSO4-xH2O and Ni-bearing spinel, possibly NiFe2O4. Spinel was also detected using XRD. Acetate extracts most of the NiSO4-xH2O and concentrates insoluble NiFe2O4 in extraction residue. Similar to fly ash, ambient PM contains NiSO4-xH2O and NiFe2O4;

however, the proportion of NiSO4-xH2O relative to NiFe2O4 is much greater in the PM. Results from this and previous investigations indicate that residual oil ash produced in the 7-kW combustion system lack insoluble Ni (e.g., NiFe2O4) but are enriched in soluble NiSO4-xH2O relative to fly ash from utility-scale systems. This difference in Ni speciation is most likely related to the lack of additive [e.g., Mg(OH)2] injection and residence time in the 7-kW combustion system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号