Abstract: | ABSTRACTThis work deals with the optimization of an hybrid energy system used to supply an isolated site. The proposed system combines a wind turbine, a photovoltaic panel, a diesel generator and a battery bank to electrify atypical home. An energy cost-effectiveness approach is adopted in accordance with meteorological data, time profile of energy consumption, and the cost of different alternative systems. A variety of performances is obtained through simulations within the Homer Pro environment. The selection of an optimal combination is based on the maximum integration of renewable energy in the suggested system with a minimum of gas emission. According to the obtained results, the overall cost of the selected installation is about 72,900 €, with 0.415€ the unit cost of a kWh electric energy provided with a contribution of renewable energy of around 86%. Simulations show a technical and financial benefits of the different configurations obtained to supply the target site. To control the proposed hybrid energy system, a supervision algorithm is developed and implemented on TMS320F28027 DSP platform. The proposed energy system aims to take advantages of renewable energy sources and shift to conventional sources only when necessary in order to ensure source autonomy and service continuity. |