首页 | 本学科首页   官方微博 | 高级检索  
     

亚热带河口陆基养殖塘底泥甲烷产生动力学研究
引用本文:谭季,罗敏,黄佳芳,朱爱菊,李敬,胡启凯,仝川. 亚热带河口陆基养殖塘底泥甲烷产生动力学研究[J]. 环境科学学报, 2020, 40(2): 665-677. DOI: 10.13671/j.hjkxxb.2019.0399
作者姓名:谭季  罗敏  黄佳芳  朱爱菊  李敬  胡启凯  仝川
作者单位:福建师范大学地理研究所,福州350007;福建师范大学,湿润亚热带生态地理过程教育部重点实验室,福州350007;福建师范大学地理科学学院,福州350007;闽江河口湿地生态系统国家定位观测研究站(国家林业和草原局),福州350007,福建师范大学地理研究所,福州350007;福建师范大学,湿润亚热带生态地理过程教育部重点实验室,福州350007;闽江河口湿地生态系统国家定位观测研究站(国家林业和草原局),福州350007,福建师范大学地理研究所,福州350007;福建师范大学,湿润亚热带生态地理过程教育部重点实验室,福州350007;福建师范大学地理科学学院,福州350007;闽江河口湿地生态系统国家定位观测研究站(国家林业和草原局),福州350007,福建师范大学地理研究所,福州350007;福建师范大学,湿润亚热带生态地理过程教育部重点实验室,福州350007;福建师范大学地理科学学院,福州350007;闽江河口湿地生态系统国家定位观测研究站(国家林业和草原局),福州350007,福建师范大学地理研究所,福州350007;福建师范大学,湿润亚热带生态地理过程教育部重点实验室,福州350007;福建师范大学地理科学学院,福州350007;闽江河口湿地生态系统国家定位观测研究站(国家林业和草原局),福州350007,福建师范大学地理研究所,福州350007;福建师范大学,湿润亚热带生态地理过程教育部重点实验室,福州350007;福建师范大学地理科学学院,福州350007;闽江河口湿地生态系统国家定位观测研究站(国家林业和草原局),福州350007,福建师范大学地理研究所,福州350007;福建师范大学,湿润亚热带生态地理过程教育部重点实验室,福州350007;福建师范大学地理科学学院,福州350007;闽江河口湿地生态系统国家定位观测研究站(国家林业和草原局),福州350007
基金项目:国家自然科学基金(No.41671088,41601102);福建省科技厅重点项目(No.2019J02008);湿润亚热带生态-地理过程教育部重点实验室基金(No.2017KFJJ02);中国科学院海岸带环境过程与生态修复重点实验室开放基金(No.2018KFJJ10);福建林业科技项目(No.201935)
摘    要:河口区陆基围垦养殖塘是重要的温室气体排放源,但其底泥甲烷产生动力学特征目前尚未厘清.本研究对我国东南沿海亚热带闽江河口、木兰溪河口和九龙江河口的6个南美白对虾(Penaeus vannamei)养殖塘底泥进行了为期60 d的室内厌氧培养,并对甲烷累积产量曲线利用一阶动力学模型及改进的岡珀茨模型进行拟合和分析.结果表明,所有河口陆基养殖塘底泥产甲烷过程是一个动态变化过程,可分为延滞、产生和稳定3个阶段.延滞期发生在培养初期1~4 d,产生期主要集中在4~25 d,在培养25 d后,所有养殖塘底泥的甲烷累积产量曲线趋于平衡.盐度和孔隙水DOC浓度均能够影响养殖塘底泥甲烷产生动力学拟合参数.随着养殖塘底泥盐度的增加,甲烷最大产生潜力由5961 ng·g-1减少至559 ng·g-1,甲烷最大产生速率由674 ng·g-1·d-1减少至84 ng·g-1·d-1.研究表明,一阶动力学模型更适合低盐养殖塘底泥甲烷产生动力学过程的拟合,而改进的岡珀茨模型更适合高盐养殖塘底泥甲烷产生动力学过程的拟合.选择近海养殖塘进行南美白对虾养殖及在甲烷产生期来临之前清除底泥可极大程度地减少养殖塘底泥温室气体CH4的产生潜力.

关 键 词:甲烷产生潜力  一阶动力学模型  改进的岡珀茨模型  延滞期  河口陆基养殖塘
收稿时间:2019-07-23
修稿时间:2019-10-16

Kinetics of methane production from the sludge of wetland-based reclaimed shrimp pools in the subtropical estuaries
TAN Ji,LUO Min,HUANG Jiafang,ZHU Aiju,LI Jing,HU Qikai and TONG Chuan. Kinetics of methane production from the sludge of wetland-based reclaimed shrimp pools in the subtropical estuaries[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 665-677. DOI: 10.13671/j.hjkxxb.2019.0399
Authors:TAN Ji  LUO Min  HUANG Jiafang  ZHU Aiju  LI Jing  HU Qikai  TONG Chuan
Affiliation:1. Institute of Geographical Research, Fujian Normal University, Fuzhou 350007;2. Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350007;3. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007;4. Wetland Ecosystem Research Station of Minjiang Estuary, State Forestry and Grassland Administration, Fuzhou 350007,1. Institute of Geographical Research, Fujian Normal University, Fuzhou 350007;2. Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350007;3. Wetland Ecosystem Research Station of Minjiang Estuary, State Forestry and Grassland Administration, Fuzhou 350007,1. Institute of Geographical Research, Fujian Normal University, Fuzhou 350007;2. Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350007;3. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007;4. Wetland Ecosystem Research Station of Minjiang Estuary, State Forestry and Grassland Administration, Fuzhou 350007,1. Institute of Geographical Research, Fujian Normal University, Fuzhou 350007;2. Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350007;3. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007;4. Wetland Ecosystem Research Station of Minjiang Estuary, State Forestry and Grassland Administration, Fuzhou 350007,1. Institute of Geographical Research, Fujian Normal University, Fuzhou 350007;2. Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350007;3. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007;4. Wetland Ecosystem Research Station of Minjiang Estuary, State Forestry and Grassland Administration, Fuzhou 350007,1. Institute of Geographical Research, Fujian Normal University, Fuzhou 350007;2. Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350007;3. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007;4. Wetland Ecosystem Research Station of Minjiang Estuary, State Forestry and Grassland Administration, Fuzhou 350007 and 1. Institute of Geographical Research, Fujian Normal University, Fuzhou 350007;2. Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350007;3. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007;4. Wetland Ecosystem Research Station of Minjiang Estuary, State Forestry and Grassland Administration, Fuzhou 350007
Abstract:Wetland-based reclaimed aquaculture pools play an important role in offsetting carbonaceous greenhouse gas emissions in coastal areas. However, the kinetic characteristics of the potential methane production of these aquaculture pools have not been clarified yet. Herein, we investigated six shrimp (Penaeus vannamei) pools in subtropical estuaries (Min river, Mulan river and Jiulong river) in southeast China. By applying the first-order kinetic model and the modified Gompertz model, the potential methane production of the sludge of these pools was anaerobically incubated for 60 days. All the processes of potential methane production can be divided into three stages:lag phase, production phase and stability phase. The lag phase occurred in the first 1~4 days, and the production period was mainly concentrated in 4~25 days. After 25 days, the methane accumulation curves in the shrimp pools'' sludge tended to be stable. Salinity and DOC, both can affect the kinetic fitting parameters of methane production. With an increase in salinity, the potential methane production decreased from 5961 ng·g-1 to 559 ng·g-1, and the maximum methane production rates decreased from 674 ng·g-1·d-1 to 84 ng·g-1·d-1. Our results suggested that the first-order kinetic model and the modified Gompertz model are best fitted to the methane production process in low- and high-salt shrimp pools, respectively. Offshore shrimp aquaculture and the disposal of pool bottom sludge may greatly reduce greenhouse gas emissions.
Keywords:methane production potential  first-order kinetic model  modified Gompertz model  lag phase  wetland-based reclaimed pools
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号