首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mobile sources of atmospheric polycyclic aromatic hydrocarbons in a roadway tunnel
Institution:1. Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea;2. School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea;3. Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea;4. Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea;5. Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N5B3, Canada;6. Department of Environmental Science, Baylor University, Waco, TX 76798-7266, United States
Abstract:Amounts of polycyclic aromatic hydrocarbons (PAHs) and oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) in samples collected from the air, from the dust on a guardrail, and from the soils on a tunnel roadway at five sampling sites in a regular roadway tunnel were chemically analyzed in order to determine their sources. Among the 23 PAHs found in the air samples, pyrene was found in the highest concentration (43±7.2 ng/m3), followed by fluoranthene (26±4.3 ng/m3). Among 20 oxy-PAHs found in the air samples, anthraquinone was found in the greatest amount (56±3.9 ng/m3). The average concentration of the major PAHs found in the guardrail dust samples were 6.9±0.77 μg/g for pyrene, 5.5±0.76 μg/g for fluoranthene, and 2.6±0.30 μg/g for phenanthrene. The average concentration of the major oxy-PAHs found in the guardrail dust samples were 9.2±3.5 μg/g for anthraquinone and 1.4±0.50 μg/g for 2-methylanthraquinone. The average concentration of the major PAHs found in the soil samples were 1.1±0.31 μg/g for fluoranthene, 0.92±0.21 μg/g for pyrene, and 0.72±0.16 μg/g for phenanthrene. The average concentration of the major oxy-PAHs found in the soil samples were 1.2±0.88 μg/g for anthraquinone, 0.18±0.04 μg/g for 4-biphenylcarboxaldehyde, and 0.13±0.08 μg/g for 2-methylanthraquinone. The BeP ratios calculated from the results suggest that most PAHs found in the samples collected from the roadway tunnel were from automobile exhaust gases.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号