Reassessment of the Ocean-To-Atmosphere Flux of Carbon Monoxide |
| |
Authors: | Yuegang Zuo Maria A. Guerrero Ronald D. Jones |
| |
Affiliation: | 1. Southeast Environmental Research Program , Florida International University , Miami, FL, 33199, USA;2. Southeast Environmental Research Program , Florida International University , Miami, FL, 33199, USA;3. Department of Biological Sciences , Florida International University , Miami, Fl., 33199, USA |
| |
Abstract: | Abstract Carbon monoxide (CO) in the surface sea waters is produced predominantly by photochemical processes, oxidized by micro-organisms and outgassed to the atmosphere. to assess carbon monoxide flux from the oceans to the atmosphere, the photochemical production and microbial oxidation of carbon monoxide in the oceanic mixed-layer was investigated during several oeanographic cruises and in the laboratory. the photoproduction rate of carbon monoxide was found to be well correlated to the concentration of dissolved organic carbon (DOC) in coastal and open ocean surface waters. Taking a global average carbon monoxide production rate of 10 ± 2 nmole litre?1 (mg DOC hr)?1 in the surface open ocean water, and 25 ± 7 nmole litre?1 (mg DOC hr)?1 in coastal sea water, at cloud-free summer solar noon, the photochemical production of carbon monoxide in the global oceans is estimated to be at a rate of 1200 ± 200 Tg CO y?1. the microbial carbon monoxide turnover time in the mixed-layer was observed to range from hours in a coastal estuary to 16 days in the Pacific along 1057deg; W in dark incubations. Natural sunlight can largely inhibit the microbial consumption of carbon monoxide in surface water. On a global scale, microbial consumption is responsible for the loss of less than 10% of photochemical produced carbon monoxide in the surface ocean. Field measurements have shown that the net transport of carbon monoxide from the euphotic zone to the underlying deeper ocean water is limited and that the overall life time in surface sea waters is less than 3-4 hours. When combined, these field measurements with the photoproduction and microbial consumption rates obtained, we estimate the oceanic flux to the atmosphere is about 1000 ± 200 Tg CO y?1, which represents the largest single source of atmospheric carbon monoxide. |
| |
Keywords: | Carbon monoxide marine chemistry sea-to-air gas exchange natural dissolved organic matter |
|
|