首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征提取的输油管道泄漏系数预测*
引用本文:马云路,郑坚钦,梁永图. 基于特征提取的输油管道泄漏系数预测*[J]. 中国安全生产科学技术, 2022, 18(10): 130-135. DOI: 10.11731/j.issn.1673-193x.2022.10.019
作者姓名:马云路  郑坚钦  梁永图
作者单位:(中国石油大学(北京),北京 102249)
基金项目:* 基金项目: 国家自然科学基金项目(51874325)
摘    要:为准确预测管道泄漏系数,估计管道泄漏量,以基于瞬变流方法的模拟数据为例,建立多个管道泄漏系数预测模型(多层感知机、长短期记忆网络、随机森林、支持向量机以及K近邻回归),综合考虑管道流量和压力数据特点,提出序列提取法和均值提取法2种管道时序数据预处理方法,模型评价指标为相关系数(R2)和平均绝对百分比误差(MAPE)。研究结果表明:随机森林和多层感知机的抗噪性较强,在5%的噪声影响下,模型准确度下降幅度较小;均值提取法去噪功能较好,可在一定程度上降低噪声影响;基于均值提取法的多层感知机模型效果相对较好,R2为0.997 5,MAPE为1.599%,研究结果可为准确预测管道泄漏系数、估计泄漏量提供指导。

关 键 词:管道泄漏检测  特征提取  机器学习  多层感知机  随机森林

Prediction on leakage coefficient of oil pipeline based on feature extraction
MA Yunlu,ZHENG Jianqin,LIANG Yongtu. Prediction on leakage coefficient of oil pipeline based on feature extraction[J]. Journal of Safety Science and Technology, 2022, 18(10): 130-135. DOI: 10.11731/j.issn.1673-193x.2022.10.019
Authors:MA Yunlu  ZHENG Jianqin  LIANG Yongtu
Affiliation:(China University of Petroleum Beijing,Beijing 102249,China)
Abstract:In order to accurately predict the leakage coefficient of pipeline and estimate the leakage amount of pipeline,taking the simulation data based on transient flow method as an example,multiple prediction models for the leakage coefficient of pipeline (multi-layer perceptron,long short-term memory network,random forest,support vector machine,K nearest neighbor regression) were established.Considering the data characteristics of pipeline flow rate and pressure comprehensively,two preprocessing methods of pipeline time series data,including the sequence extraction method and mean extraction method,were proposed.The model evaluation indicators were the correlation coefficient (R2) and the mean absolute percentage error (MAPE).The results showed that the random forest and multi-layer perceptron were more resistant to the noise,and the accuracy of models did not decrease much under the influence of 5% noise.The mean extraction method was powerful in denoising,which could reduce the influence brought by noise to a certain extent.The multi-layer perceptron model based on the mean extraction method worked the best with R2 of 0.997 5 and MAPE of 1.599%.The results have the guidance significance for the accurate prediction of pipeline leakage coefficient and the estimation of leakage amount.
Keywords:pipeline leakage detection   feature extraction   machine learning   multi-layer perceptron   random forest
点击此处可从《中国安全生产科学技术》浏览原始摘要信息
点击此处可从《中国安全生产科学技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号