首页 | 本学科首页   官方微博 | 高级检索  
     

基于Adam优化深度神经网络快速确定瓦斯抽采半径*
引用本文:郝天轩,陈国印,赵立桢,唐一举. 基于Adam优化深度神经网络快速确定瓦斯抽采半径*[J]. 中国安全生产科学技术, 2022, 18(6): 52-57. DOI: 10.11731/j.issn.1673-193x.2022.06.008
作者姓名:郝天轩  陈国印  赵立桢  唐一举
作者单位:(1.河南理工大学 安全科学与工程学院,河南 焦作 454000;2.河南省瓦斯地质与瓦斯治理重点实验室—省部共建国家重点实验室培育基地,河南 焦作 454000;3.煤炭安全生产河南省协同创新中心,河南 焦作 454000)
基金项目:* 基金项目: 河南省科技攻关项目(222102320172,172102310474,222102320413);中国工程科技发展战略咨询研究项目(2020HENZDB02)
摘    要:为解决煤矿瓦斯有效抽采半径难以快速准确确定的问题,采用基于Adam算法优化DNN(深度神经网络)方法来预测瓦斯抽采半径。查阅文献共收集已得到验证的970组数据集,每组数据选取煤层瓦斯初始渗透率、钻孔直径、抽采时间、地应力、煤层初始瓦斯压力作为预测模型的5个特征量,有效抽采半径作为目标输出值。接着预测模型进行不断学习和训练,最终训练得到1个最优的瓦斯有效抽采半径预测模型。利用训练好的最优预测模型结合Python语言开发出计算有效抽采半径的软件,并使用该软件在四季春煤矿和鹤煤六矿进行有效抽采半径预测的工程实例研究,验证该软件预测抽采半径的实用性和准确性。研究结果表明:通过使用开发的软件,可快速且较准确地计算出矿井瓦斯有效抽采半径,可为暂不具备现场测试条件的矿井抽采设计提供一定的参考依据。

关 键 词:Adam算法  有效抽采半径  预测模型  Python语言  有效抽采半径计算软件

Quickly determining gas drainage radius based on Adam optimized deep neural network
HAO Tianxuan,CHEN Guoyin,ZHAO Lizhen,TANG Yiju. Quickly determining gas drainage radius based on Adam optimized deep neural network[J]. Journal of Safety Science and Technology, 2022, 18(6): 52-57. DOI: 10.11731/j.issn.1673-193x.2022.06.008
Authors:HAO Tianxuan  CHEN Guoyin  ZHAO Lizhen  TANG Yiju
Affiliation:(1.School of Safety Science and Engineering,Henan University of Technology,Jiaozuo Henan 454000,China;2.Henan Province Key Laboratory of Gas Geology and Gas Governance-the National Key Laboratory Cultivation Base Jointly Established by the Province and the Ministry,Jiaozuo Henan 454000,China;3.Henan Collaborative Innovation Center for Coal Safety Production,Jiaozuo Henan 454000,China)
Abstract:In order to solve the problem that it is difficult to quickly and accurately determine the effective gas drainage radius of coal mines,an optimized DNN (deep neural network) method based on Adam algorithm was used to predict the gas drainage radius.A total of 970 groups of data sets that had been verified were collected by referring to the literature.For each group of data,the initial permeability of coal seam gas,borehole diameter,drainage time,in-situ stress,and initial coal seam gas pressure were selected as 5 characteristic quantities of the prediction model,and the drainage effective radius was taken as the target output value.The prediction model was continuously learned and trained,and finally an optimal prediction model of gas drainage effective radius was obtained by training.Using the trained optimal prediction model combined with Python language,a software for calculating the drainage effective radius was developed,and the software was used to conduct the engineering case study on the prediction of drainage effective radius in Sijichun coal mine and Hemei No.6 coal mine,and the practicability and accuracy of the software for predicting the drainage radius were verified.By using the developed software,the drainage effective radius of mine gas could be calculated quickly and accurately,which provides a certain reference for mine drainage design without the field test conditions temporarily.
Keywords:Adam algorithm   effective drainage radius   prediction model   Python language   calculation software of effective drainage radius
点击此处可从《中国安全生产科学技术》浏览原始摘要信息
点击此处可从《中国安全生产科学技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号