Mesoscale modeling of wintertime particulate matter episodes in eastern Washington, USA |
| |
Authors: | Rafael Villasenor, Candis Claiborn, Brian Lamb,Susan O Neill |
| |
Affiliation: | Rafael Villasenor, Candis Claiborn, Brian Lamb,Susan O’Neill |
| |
Abstract: | The Spokane, Washington area is classified as a non-attainment area for the 24-h PM10 standard due to a history of high particulate matter concentrations. A Eulerian regional air quality model (CALMET/CALGRID) has been used to characterize the emission, transport and dispersion of PM10 and PM2.5 in Spokane. Observations from a residential site (Rockwood, RW) and an industrial site (Crown Zellerbach, CZ), spanning July 1994–August 1996 were used to evaluate the current emission inventory. Two major tasks were devised to conduct the objectives of this investigation. First, a simple and efficient urban dispersion model (WYNDValley) was used to simulate important episodes characterized by the highest PM10 and PM2.5 concentrations. The selected episodes included four days with wet conditions for which no roads would have been emitting and seven days with dry conditions for which roads would emit. In the second step, a single road-emitting event was selected from the previous predicted results for further analysis using the Eulerian regional air quality model to examine the emission inventory. The urban and regional models predicted the observed concentration distributions reasonably well for the source emissions inventoried in Spokane. The mass concentrations of PM10 were well predicted for the roads emitting case examined by both models indicating that the emission inventory based primarily upon area sources including roads is reasonably well characterized, at least at the RW site. The area sources around CZ are less well characterized, so that the PM10 concentrations are underpredicted at CZ. The models appear unable to reach an equilibrium mass balance status at the beginning of the simulation, and the urban model seems unable to properly resolve the nocturnal boundary layer. |
| |
Keywords: | Air quality modeling Meteorology Emission inventory Emission factors Fugitive dust emissions |
本文献已被 ScienceDirect 等数据库收录! |
|