首页 | 本学科首页   官方微博 | 高级检索  
     


Quantification of Water, Salt and Nutrient Exchange Processes at the Mouth of A mediterranean Coastal Lagoon
Authors:Georgios K. Sylaios  Vassilios A. Tsihrintzis  Christos Akratos  Kiriaki Haralambidou
Affiliation:(1) NAGREF, Fisheries Research Institute, 64007 Nea Peramos, Kavala, Greece;(2) Laboratory of Ecological Engineering & Technology, Department of Environmental Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
Abstract:Vassova lagoon is a typical Mediterranean (small, shallow, micro-tidal, well-mixed) coastal lagoon, receiving limited seasonal freshwater inflows from direct precipitation and underground seepage. An intensive study was carried out in order to quantify the mechanisms responsible for the intra-tidal and residual transport of water, salt, nutrients and chlorophyll at the mouth of this lagoon and to assess the lagoon's flushing behavior. Results indicated that although the system is micro-tidal, tidal effects appeared to be the dominant factor for the longitudinal distribution of physical and chemical parameters, while the associated residual flow is also important and serves as a baseline measure of overall circulation. However, analysis of the net longitudinal currents and fluxes of water, salt and nutrients revealed the importance of non-tidal effects (wind effect and precipitation incidents) in the mean tidal transport. It is shown that the Eulerian residual currents transported water and its properties inwards under southern winds, while a seaward transport was induced during precipitation incidents and northern winds. The Stokes drift effect was found an order of magnitude lower than the Eulerian current, directed towards the lagoon, proving the partially-progressive nature of the tide. Nutrients and chlorophyll-α loads are exported from the lagoon to the open sea during the ebb phase of the autumn and winter tidal cycles, associated with the inflow of nutrient-rich freshwater, seeped through the surrounding drainage canal. The reverse transport occurs in spring and early summer, when nutrients enter the lagoon during the flood tidal phase, from the nutrient-rich upper layer of the stratified adjacent sea. Application of a tidal prism model shows that Vassova lagoon has a mean flushing time of 7.5 days, ranging between 4 to 18 days, affected inversely by the tidal oscillation.
Keywords:residual currents  Stokes drift  water balance  salt balance  nutrients  flushing time  Vassova Lagoon
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号