首页 | 本学科首页   官方微博 | 高级检索  
     


Biomineralization in plants as a long-term carbon sink
Authors:Guillaume?Cailleau,Olivier?Braissant,Eric?P.?Verrecchia  author-information"  >  author-information__contact u-icon-before"  >  mailto:eric.verrecchia@unine.ch"   title="  eric.verrecchia@unine.ch"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Institut de Géologie, Université de Neuchâtel, Rue Emile Argand 11, 2007 Neuchâtel, Switzerland
Abstract:Carbon sequestration in the global carbon cycle is almost always attributed to organic carbon storage alone, while soil mineral carbon is generally neglected. However, due to the longer residence time of mineral carbon in soils (102–106 years), if stored in large quantities it represents a potentially more efficient sink. The aim of this study is to estimate the mineral carbon accumulation due to the tropical iroko tree (Milicia excelsa) in Ivory Coast. The iroko tree has the ability to accumulate mineral carbon as calcium carbonate (CaCO3) in ferralitic soils, where CaCO3 is not expected to precipitate. An estimate of this accumulation was made by titrating carbonate from two characteristic soil profiles in the iroko environment and by identifying calcium (Ca) sources. The system is considered as a net carbon sink because carbonate accumulation involves only atmospheric CO2 and Ca from Ca-carbonate-free sources. Around one ton of mineral carbon was found in and around an 80-year-old iroko stump, proving the existence of a mineral carbon sink related to the iroko ecosystem. Conservation of iroko trees and the many other biomineralizing plant species is crucial to the maintenance of this mineral carbon sink.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号