首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation of the behavior and metabolism of pharmaceutical residues during purification of contaminated ground water used for drinking water supply
Institution:1. Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China;2. Chongqing Academy of Eco-Environmental Science, Chongqing 401147, PR China;1. Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555; CP 549, Campo Grande, MS 79074-460, Brazil;2. Laboratori d''Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain;1. Geological Survey of Slovenia, Department of Hydrogeology, Dimičeva ulica 14, Ljubljana, Slovenia;2. Public Water Supply Company Vodovod-Kanalizacija, Ljubljana, Slovenia
Abstract:Residues of phenazone-type pharmaceuticals originating from spills of a former pharmaceutical production plant have recently been detected in ground water in Berlin, Germany. The degradation pathways of phenazone, propyphenazone, and dimethylaminophenazone (DMAA) during water purification were enlightened in batch experiments with groundwater and filter material obtained from operating waterworks. For phenazone and propyphenazone a complete biological transformation into their respective metabolites 1,5-dimethyl-1,2-dehydro-3-pyrazolone (DP) and 4-(2-methylethyl)-1,5-dimethyl-1,2-dehydro-3-pyrazolone (PDP) was observed. Generally, removal of phenazone-type pharmaceutical residues during rapid sand filtration was almost exclusively caused by microorganisms only present in polluted raw water. DMAA applied to fresh filter materials was rapidly degraded into its metabolites 1-acetyl-1-methyl-2-phenylhydrazide (AMPH), acetoaminoantipyrine (AAA), formylaminoantipyrine (FAA), and 1-acetyl-1-methyl-2-dimethyloxamoyl-2-phenylhydrazide (AMDOPH). DMAA, AAA, and FAA were, however, only detected at low levels in a few samples of purified water from an operating water works. Whereas, the metabolites AMDOPH and DP were detected up to 1 μg l−1. Propyphenazone was rapidly removed and AMPH, phenazone, and PDP were only measured with concentrations in the low ng l−1 range. The concentrations of the metabolites DP and PDP are even higher in the purified water than in the raw water caused by their formation during degradation of phenazone and propyphenazone. Reduction of filtration velocity on an experimental filter from 5 m h−1 down to 2 m h−1 resulted in improved removal of phenazone, propyphenazone and their metabolites DP and PDP, respectively. AMDOPH, however, was highly persistent in all experiments independent from filtration velocities and contact times.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号