首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1
Authors:Lee Eun-Hee  Cho Kyung-Suk
Institution:Department of Environmental Science and Engineering, Ewha Womans University, 11-1, Daehyun-dong, Seodaemun-Gu, Seoul 120-750, Republic of Korea.
Abstract:Cyclohexane is a recalcitrant compound that is more difficult to degrade than even n-alkanes or monoaromatic hydrocarbons. In this study, a cyclohexane-degrading consortium was obtained from oil-contaminated soil by an enrichment culture method. Based on a 16S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis method, this consortium was identified as comprising Alpha-proteobacteria, Actinobacteria, and Gamma-proteobacteria. One of these organisms, Rhodococcus sp. EC1, was isolated and shown to have excellent cyclohexane-degrading ability. The maximum specific cyclohexane degradation rate (Vmax) for EC1 was 246 micromol g-DCW(-1) (dry cell weight)h(-1). The optimum conditions of cyclohexane degradation were 25-35 degrees C and pH 6-8. In addition to its cyclohexane degradation abilities, EC1 was also able to strongly degrade hexane, with a maximum specific hexane degradation rate of 361 micromol g-DCW(-1)h(-1). Experiments using 14C-hexane revealed that EC1 mineralized 40% of hexane into CO2 and converted 53% into biomass. Moreover, EC1 could use other hydrocarbons, including methanol, ethanol, acetone, methyl tert-butyl ether, pyrene, diesel, lubricant oil, benzene, toluene, ethylbenzene, m-xylene, p-xylene and o-xylene. These findings collectively suggest that EC1 may be a useful biological resource for removal of cyclohexane, hexane, and other recalcitrant hydrocarbons.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号