首页 | 本学科首页   官方微博 | 高级检索  
     


An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices
Authors:J.K. Saha  N. Panwar  M.V. Singh
Affiliation:2. Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark;3. Bangor University, Bangor, United Kingdom;4. China Agricultural University, Beijing, China;5. The Ohio State University, Wooster, OH, United States;1. Department of Soil Science, College of Agriculture, University of Kurdistan, Sanandaj, Iran;2. Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy
Abstract:A study was conducted to investigate physico-chemical properties, fertilizing potential and heavy metal polluting potentials of municipal solid waste composts produced in 29 cities of the country. Results indicated that except a very few samples, all other samples have normal pH and EC. Organic matter as well as major nutrients N and P contents in MSW composts are generally low as compared to the composts prepared from rural wastes. Heavy metal contents in composts from bigger cities (>1 million population) were higher by about 86% for Zn, 155% for Cu, 194% for Cd, 105% for Pb, 43% for Ni and 132% for Cr as compared to those from smaller cities (<1 million population). Composts prepared from source separated biogenos wastes contained, on average, higher organic matter (by 57%), total N (by 77%) and total P (by 78%), but lower concentrations of heavy metals Zn (by 63%), Cu (by 78%), Cd (by 64%), Pb (by 84%), Ni (by 50%), and Cr (by 63%) as compared to those prepared from mixed wastes. Partial segregation at the site of composting did not improve quality of compost significantly in terms of fertilizing parameters and heavy metal contents. Majority of MSW composts did not conform to the quality control guideline of ‘The Fertilizer (Control) Order 1985’ in respect of total organic C, total P, total K as well as heavy metals Cu, Pb and Cr. In order to enable the relevant stakeholders to judge overall quality, a scheme has been proposed for the categorization of composts into different marketable classes (A, B, C, and D) and restricted use classes (RU-1, RU-2, and RU-3) on the basis their fertilizing potential and as well as potential for contaminating soil and food chain. Under the scheme, ‘Fertilizing index’ was calculated from the values of total organic C, N, P, K, C/N ratio and stability parameter, and ‘Clean index’ was calculated from the contents of heavy metals, taking the relative importance of each of the parameters into consideration. As per the scheme, majority of the compost samples did not belong to any classes and hence, have been found unsuitable for any kind of use. As per the regulatory limits of different countries, very few compost samples (prepared from source separated biogenos wastes) were found in marketable classes (A, B, C and D) and some samples (11–14) were found suitable only for some restricted use.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号